首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
admin
2015-05-07
191
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上
点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=
的圆面,若以每秒v
0
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
(Ⅰ)写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并求出水面高度z与时间t的函数关系;
(Ⅱ)求水表面上升速度最大时的水面高度;
(Ⅲ)求灌满容器所需时间.
选项
答案
(Ⅰ)由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是 [*] 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1-z)
2
]. 现由[*]=v
0
及z(0)=0,求z(t) 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1-z)
2
]dz=[*] (*) 两边积分并注意z(0)=0,得 [*] (**) (Ⅱ)求z取何值时[*]取最大值.已求得(*)式即 [*] (若未解答题(Ⅰ),可对题(Ⅰ)告知要证的结论即(**)式两边对t求导得[*],同样求得上式) 因此,求[*]取最大值时z的取值归结为求f(z)=z
2
+(1-z)
2
在[0,1]上的最小值点.由 [*] [*]f(z)在z=1/2在[0,1]上取最小值.故z=1/2时水表面上升速度最大. (Ⅲ)归结求容器的体积,即 [*] 因此灌满容器所需时间为[*](秒). 或由于灌满容器所需时间也就是z=1时所对应的时间t,于是在(**)中令z=1得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/AY54777K
0
考研数学一
相关试题推荐
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.证明α1,α2,α3线性无关;
若矩阵相似,则a=________.
证明:矩阵相似且合同.
已知矩阵的特征方程有重根,问参数a取何值时,A能相似于对角矩阵,并说明理由.
设方程组问:a,b为何值时,方程组有无穷多解,并求其通解.
利用极坐标计算二重积分ln(1+x2+y2)dxdy,其中D是由圆周x2+y2=1及坐标轴所围的位于第一象限的闭区域.
按两种不同积分次序化二重积分为二次积分,其中D为:直线y=0,曲线y=sinx(0≤x≤π)所围闭区域;
设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.
设函数则在点x=0处f(x)().
求极限:
随机试题
TheFrenchgovernmentistobanstudentsfromusingmobilephonesinthecountry’sprimary,juniorandmiddleschools.Children
名誉市长制,又称()。
颈段椎管狭窄,是指椎管前后径小于
功用为清热解毒,消肿溃坚,活血止痛的方剂是
关于我国立法程序,下列哪一选项的表述不能成立?
房地产开发项目的建设过程是指()的持续时间。
著名的需要层次理论提出者是心理学家()。
邓小平指出“计划经济不等于社会主义,资本主义也有计划;市场经济不等于资本主义,社会主义也有市场”这一论断表明()。
机动车在高速公路上发生故障时,警告标志应当设置的故障车()方向150米以外。
立冬日,南部沿海地区仍处在夏季的主要原因是:
最新回复
(
0
)