首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
admin
2013-01-23
75
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
4
,α
5
.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因为r(I)=r(II)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,因此α
4
可由α
1
,α
2
,α
3
线性表出,设为α
4
=lα
1
+lα
2
+lα
3
. 若k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0, 即(k
1
-l
1
k
4
)α
1
+(k
2
-l
2
k
4
)α
2
+(kα
3
-l
3
k
4
4)α
3
+k
4
α
5
=0, 由于r(Ⅲ)=4,即α
1
,α
2
,α
3
,α
5
线性无关.故必有 解出k
4
=0,k
3
=0,k
2
=0,k
1
=0. 于是α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/A0F4777K
0
考研数学三
相关试题推荐
资本主义所有制与所有权的关系是()
结合材料回答问题:材料1新冠肺炎疫情再次证明,只有构建人类命运共同体才是人间正道。在这场攸关全人类健康福祉、世界发展繁荣的斗争中,团结合作是最有力的武器。世界各国应该以团结取代分歧、以理性消除偏见,凝聚起抗击疫情的强大合力,加强合作,共克时艰,
在真理标准问题上坚持辩证法,就是要坚持()
“一国两制”伟大构想在实践中首先运用于解决香港问题、澳门问题。香港、澳门回归后的实践充分证明,“一国两制”是历史遗留的香港问题、澳门问题的最佳解决方案,也是香港、澳门回归后保持长期繁荣稳定的最佳制度,是行得通、办得到、得人心的。“一国两制”伟大构想(
建设现代化经济体系,是以习近平为核心的党中央从党和国家事业全局出发,着眼于实现“两个一百年”奋斗目标、顺应中国特色社会主义进入新时代的新要求作做出的重大决策部署。建设现代化经济体系一篇大文章,既是一个重大理论命题,更是一个重大实践课题。当前,强化现代化经济
实践证明,兴国、立国、强国的重大法宝,实现科学发展的政治保证,党和国家的生命线是()
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
证明等价无穷小具有下列性质:(1)α~α(自反性);(2)若α~β,则β~α(对称性);(3)若α~β,β~γ,则α~γ(传递性).
利用函数的凹凸性,证明下列不等式:
A是n阶矩阵,且A3=0,则().
随机试题
生殖系统按性别分为______和______,主要功能是产生______,分泌______。
集贸市场制作冷荤、凉莱的摊位应配有
关于《质量管理职责》,下列说法错误的是
A、清热B、燥湿C、散寒D、通络E、利水天麻的功效()。
患者肖某,女,65岁,因肺心病收住院治疗,缺氧和二氧化碳潴留同时并存。护士巡视病房时,发现患者口唇发绀,血气分析结果显示:PaO25.6kPa,PaCO29~kPa。此时应给予
某工业企业大量生产甲、乙两种商品。该企业采用品种法计算产品成本,适用的增值税税率为17%。2013年5月份,该企业发生的有关经济业务如下:(1)5月份开始生产甲、乙产品,当月投产甲产品270件,耗用材料4800千克;投产乙产品216件,耗用材料
“法律必须被信仰,否则它就形同虚设”是美国著名法学家伯尔曼的名言。请根据对这句话的思考,自拟题目,写一篇文章。要求:1.自选角度,立意明确,富于思想性:2.联系实际:3.内容饱满,语言简练有力:4.1000~1200字。
下列文本不属于我国古代法律文本的是()。
以下叙述中,错误的是
Therewasatimewhenparentswhowantedaneducationalpresentfortheirchildrenwouldbuyatypewriter,aglobeoranencyclo
最新回复
(
0
)