首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有二阶线性微分方程 (Ⅰ)作自变量替换x=,把方程变换成y关于t的微分方程. (Ⅱ)求原方程的通解.
设有二阶线性微分方程 (Ⅰ)作自变量替换x=,把方程变换成y关于t的微分方程. (Ⅱ)求原方程的通解.
admin
2019-04-22
83
问题
设有二阶线性微分方程
(Ⅰ)作自变量替换x=
,把方程变换成y关于t的微分方程.
(Ⅱ)求原方程的通解.
选项
答案
(Ⅰ)先求 [*] 再将①求导,得 [*] 将②,③代入原方程得 [*] (Ⅱ)题(Ⅰ)已把原方程转化为④,故只需求解这个二阶线性常系数非齐次方程,它的相应特征方程λ
2
+2λ+1=0,有重根λ=-1.非齐次方程可设特解y
*
=Asint+Bcost,代入④得 -(Asint+Bcost)+2(Acost-Bsint)+(Asint+Bcost)=2sint 即 Acost-Bsint=sint 比较系数得A=0,B=-1,即y
*
(t)=-cost.因此④的通解为 y=(c
1
+c
2
t)e
-t
-cost 原方程的通解为 y=(c
1
+c
2
arcsinx)e
-arcsinx
-[*],c
1
,c
2
为[*]常数. 其中t=arcsinx,cost=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9xV4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设n阶方阵A满足A2+3A一2E=O,求A-1及(A+E)-1.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设随机变量X1,X2,…,Xn,…相互独立,则根据列维一林德伯格中心极限定理,当n定充分大时,X1+X2+…+Xn近似服从正态分布,只要Xi(i=1,2,…)满足条件()
设f(χ,y)二阶连续可偏导,g(χ,y)=f(eχy,χ2+y2),且f(χ,y)=1-χ-y+o(),证明:g(χ,y)在(0,0)处取极值,并判断是极大值还是极小值,求极值.
讨论下列函数的连续性并判断间断点的类型:
设f(x)在[a,b]上可导,且f’(a).f’(b)<o.试证:存在ξ∈(a,b),使f’(ξ)=0.
随机试题
简述行政追偿的条件。
甲国某核电站因极强地震引发爆炸后,甲国政府依国内法批准将核电站含低浓度放射性物质的大量污水排入大海。乙国海域与甲国毗邻,均为《关于核损害的民事责任的维也纳公约》缔约国。下列哪一说法是正确的?(2011年卷一32题)
下列不符合《防震减灾法》规定的是()
下列各项中,属于非流动负债的有()。
在金融创新过程中,商业银行变被动负债为主动吸收存款的业务是()。
外商投资企业申请经营旅行社业务,应当持相关证明文件向()提出申请。
Anyonewhohassearchedforajobfreshoutofcollegeknowshowdifficultitistogetthatfirstjob.Sendingouthundredsof
(41)______(43)______
I’veheardhim______aboutyouoften.
A、Americansspendlessmoneyonpetsbecauseofthecurrenteconomicrecession.B、Americansspendlessmoneyonpetsdespitethe
最新回复
(
0
)