首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2019-07-23
50
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
由于[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0是全微分方程,则 [*] 即 x
2
+2xy一f(x)=f"(x)+2xy f"(x)+f(x)=x
2
这是一个二阶线性常系数非齐次微分方程,可求得其通解为 f(x)=C
1
cosx+C
2
sinx+x
2
一2 由f(0)=1及f’(0)=1,可求得C
1
=2,C
2
=1,从而得 f(x)=2cosx+sinx+x
2
一2 于是原方程为 [xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+COSX+2x+x
2
y)dy=0 其通解是 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9wc4777K
0
考研数学一
相关试题推荐
若,则为
已知向量组α1,α2,α3,α4线性无关,则向量组()
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f’(c)|≤2a+.
求函数在点P(一1,3,一3)处的梯度以及沿曲线x=一t2,y=3t2,z=一3t2在点P参数增大的切线方向的方向导数.
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η1=(O,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
抛n次硬币(该币每次出现正面的概率均为p),则共出现偶数次正面的概率为:
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为()T.①求A.②证明A+E是正定矩阵.
求由曲线y=与直线y=a(0<a<1)以及x=0,x=1围成的平面图形(如图1-3-3的阴影部分)绕x轴旋转一周所成的旋转体的体积V(a)。
随机试题
汉地佛教寺院天王殿中,右手持宝伞、左手握神鼠的天王是()。
“一国两制”的核心是()。
Iknewamanwhowasaskedtobethenewdean(院长)oftheCollegeofBusinessofalargeuniversity.Whenhefirstarrived,hestu
试述股骨颈骨折的临床表现及诊断。
患者,女,48岁,患直肠癌,明日手术。在遵医嘱行大量不保留灌肠过程中,溶液流入受阻,此时首要的处理方法是
行政诉讼程序是()。
公民个人品德与职业道德、社会公德、家庭美德没有任何联系。()
Modernliberalopinionissensitivetoproblemsofrestrictionoffreedomandabuseofpower.(1)_____,manyholdthatamancan
TheWorldTradeOrganizationwasfoundedin1995.ItabsorbedtheGeneralAgreementonTariffsandTrade(GAIT),whichcoverstr
Asifyouneededanotherreasontohatethegym,itnowturnsoutthatexercisecanexhaustnotonlyyourmuscles,butalsoyour
最新回复
(
0
)