首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是( ).
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是( ).
admin
2019-08-12
60
问题
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是( ).
选项
A、r(A)=m
B、r(A)=n
C、A为可逆矩阵
D、r(A)=n且b可由A的列向量组线性表示
答案
D
解析
方程组AX=b有解的充分必要条件是b可由矩阵A的列向量组线性表示,在方程组AX=b有解的情形下.其有唯一解的充分必要条件是r(A)=n,故选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/9iN4777K
0
考研数学二
相关试题推荐
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
设A是n阶正定矩阵,E是n阶单位矩阵,证明:A+E的行列式大于1.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位矩阵.求方阵A的伴随矩阵A*的一个特征值.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[-2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设A是n×n矩阵,对任何n维列向量x都有AX=0,证明:A=O.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
随机试题
A.腹股沟斜疝B.腹股沟直疝C.股疝D.切口疝(2009年第148题)最容易发生嵌顿的疝是
以下生命活动与蛋白质的生理功能无关的是
下列哪种材料为窝沟封闭剂的主要成分()
如下除了哪一项,均可鉴别外感咳嗽与内伤咳嗽
各级预算由本级政府组织执行,具体工作由本级政府财政部门负责。()
某事业单位尚未实行国库集中收付制度。2010年8月10日,该单位收到开户银行转来的收款通知,收到财政部门拨入的日常事业活动经费30000元,则当日该事业单位做会计处理时应借记()。
20世纪50年代,英过首相丘吉尔_____________于美苏技术的飞跃发展,乃开始对技术正视,1956年的白皮书是技术教育的绿灯,继而技术学院纷纷成立。今天,科技已经普遍成为大学知识结构的一个组成部分。就大学教学与研究来说,不但再没有轻忽“实用性”知识
()是公司制的核心。
Itwasnowclearthatnosuchweaponsweremanufacturedandnonebeenfound.
A—reading,referenceandcopyingJ—lecturehallB—staffonlyK—readingroomforreferencebooksC—closedshelvesforundergrad
最新回复
(
0
)