首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,+∞)内二阶可导且f"(x)<0,又b>a,f(b)>0,f’(b)<0,求证: (Ⅰ); (Ⅱ)方程f(x)=0在[b,+∞)内有且仅有一个实根. (Ⅲ)设又有f(a)>0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
设函数f(x)在[a,+∞)内二阶可导且f"(x)<0,又b>a,f(b)>0,f’(b)<0,求证: (Ⅰ); (Ⅱ)方程f(x)=0在[b,+∞)内有且仅有一个实根. (Ⅲ)设又有f(a)>0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
admin
2015-04-30
119
问题
设函数f(x)在[a,+∞)内二阶可导且f"(x)<0,又b>a,f(b)>0,f’(b)<0,求证:
(Ⅰ)
;
(Ⅱ)方程f(x)=0在[b,+∞)内有且仅有一个实根.
(Ⅲ)设又有f(a)>0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
选项
答案
(Ⅰ)f"(x)<0(x∈[0,+∞))→f(x)在[a,+∞)是凸函数→ f(x)<f(b)+f’(b)(x一b) (x∈[a,+∞),x≠b). [*] (Ⅱ)f(x)在[a,+∞)连续,f(b)>0,[*](a,+∞)有一个零点. 因f"(x)<0(x∈[a,+∞))→f’(x)在[a,+∞)[*].由f’(b)<0→f’(x)<0(x>b)→f(x)在[b,+∞)[*]→f(x)在(b,+∞)只有唯一零点. (Ⅲ)由题(Ⅱ)只须证f(x)>0(x∈[a,b]).当x∈[a,b]时,由于f’(b)<0,f’(x)[*],只有以下两种情形: 1° f’(a)≤0,f’(x)<0(x∈(a,b])→f(x)在[a,b][*],如图(1)→ f(x)≥f(b)>0(x∈[a,b]); [*] → f(x)≥f(a)>0(0≤x≤x
0
), f(x)≥f(b)>0 (x
0
≤x≤b) →f(x)>0(x∈[a,b]). 因此f(x)在[a,+∞)有唯一零点,即方程f(x)=0在[a,+∞)有且仅有一个实根.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9fbD777K
0
考研数学二
相关试题推荐
关于基本粒子目前最被认可的理论是“标准理论”。它约在30年前确立,已发现的基本粒子都可以根据这一理论进行解释。100多年来,质子、中子、电子等基本粒子陆续被发现。面对这些成绩,有人认为,宇宙间的基本粒子被发现得差不多了,即使有,也可以用现有的理论解释,因而
假设银行体系准备金为750亿元,公众持有现金500亿元,中央银行法定活期存款准备金率为10%,法定定期存款准备金率为5%,流通中通货比率为20%,定期存款比率是40%,商业银行的超额准备金率为18%,试求:[上海财经大学2016研]狭义货币供应量MI是
设实数x,y满足的最大值为()。
已知在关于x的一元二次方程a(1—x2)=bx+c(1+x2)=0中,a、b、c是直角三角形ABC的三条边,其对角分别为∠A、∠B、∠C,其中∠C=90°。如果这个方程的两个根为x1和x2,且x12+x22=12,则=()。
设二次型f(χ1,χ2,χ3)=5χ12+aχ22+332-2χ1χ2+6χ1χ3-62χ3的矩阵合同于(Ⅰ)求常数a的值;(Ⅱ)用正交变换法化二次型厂(χ1,χ2,χ3)为标准形.
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,f’(0)=,f"(0)=—1,则=________.
已知A是3阶矩阵,ai(i=1,2,3)是3维非零列向量,若Aai=iai(i=1,2,3),令α=α1+α2+α3。(Ⅰ)证明:α,Aα,A2α线性无关;(Ⅱ)设P=(α,Aα,A2α),求P—1AP.
微分方程xy(5)一y(4)=0的通解为_______.
讨论函数的单调性、极值点、凹凸性、拐点和渐近线。
设可导,试求a,b.
随机试题
欧洲美元
组织设计
A.解痉、止痛B.阑尾切除C.禁食、补液、抗炎治疗D.脾切除E.肠切除术
男,75岁。反复上腹痛30余年,消瘦、黑便3个月,十余年前胃镜检查诊断为“慢性萎缩性胃炎”。本次胃镜检查显示:胃皱襞减少,黏膜不平,黏膜下血管透见,胃窦可见直径2cm深溃疡,周边隆起。溃疡周边活检病理学检查,最不可能出现的病理改变是()
A.潮解B.粘连C.腐烂D.虫蛀E.霉变牛膝易变异的现象是()。
房地产市场营销因素调查包括的类型有()。
多层民用建筑、地上多层汽车库、高层民用建筑的裙房同时使用1支水枪的单建式人防工程的消火栓最大间距为()m。
普通日记账按用途分属于( )。
设f(x)可导,则下列说法正确的是().
Theneedforbirthcontrolmethodshasdevelopedfairly【B1】______,withthedesireamongmanywomentobeableto【B2】______when
最新回复
(
0
)