首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
admin
2020-03-05
19
问题
设α
1
,α
2
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
方法一 由α
1
,α
2
,…,α
t
线性无关[*]β,α
1
,α
2
,…,α
t
线性无关, 令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, ∵,β,α
1
,α
2
,…,α
t
线性无关,∴[*]k=k
1
=…=k
t
=0, ∴β,β+α
1
,β+α
2
,…,β+α
t
线性无关 方法二令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0[*](k+k
1
+…+k
t
)β=-k
1
α
1
-…-k
t
α
t
[*](k+k
1
+…+k
t
)Aβ=-k
1
Aα
1
-…-k
t
Aα
t
=0, ∵Aβ≠0,∴k+k
1
+…+k
t
=0,∴k
1
α
1
+…+k
t
α
t
=0[*]k=k
1
=…=k
t
=0[*]β,β+α
1
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9cS4777K
0
考研数学一
相关试题推荐
设f(x)连续,则∫0xxf(x—t)dt=_________.
幂级数的收敛域是__________.
二元函数f(x,y)=xy在点(e,0)处的二阶(即n=2)泰勒展开式为_________.(不要求写余项)
统计资料表明,男性患色盲的概率为5%,现有一批男士做体检.则事件“发现首例患色盲的男士已检查了30名男士"的概率α为________.
已知a,b,c不全为零,证明方程组只有零解.
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)||x+y|≤1,|x-y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y’’一(2x+1)y’+2y=0的两个解,若u(—1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
已知A是3阶不可逆矩阵,一1和2是A的特征值,B=A2一A一2E,求B的特征值,并问B能否相似对角化,并说明理由.
讨论反常积分∫02的敛散性,若收敛计算其值.
随机试题
ThetwopartiesthathaveheldpowerinBritainsince1945are______.()
一位长期卧床的老年妇女,大便每周一次,下列哪项血液化验和便秘关系密切
独活具有的功效是()
非典型苯丙酮尿症缺乏的酶不包括
根据药品广告审查发布标准相关规定,下列关于药品广告内容要求的说法错误的是
A.晚餐后禁食B.检查前4h禁食C.皮肤过敏试验D.检查前半小时注射阿托品E.检查前晚服用导泻剂
甲公司与乙公司依CIF安特卫普价格订立了出口一批布料的合同。货物运输途中,乙公司将货物转卖给丙公司。关于这批布料两次交易的风险转移时间,依2000年《国际贸易术语解释通则》及《联合国国际货物销售合同公约》的规定,下列哪些选项是正确的?()
一般而言,市场经济体制下财政的职能有()。
公安执法监督的内容是公安机关及其人民警察在执行职务活动中()。
邹韬奋主编的7大主要报刊,具体时间地点。(复旦大学,2009年)
最新回复
(
0
)