首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
admin
2016-04-11
88
问题
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Ax=b恒有解的充分必要条件是r(A)=m.
选项
答案
必要性:设ε
j
为E
m
的第j个列向量,由必要性假定,方程组Ax=ε
j
有解c
j
,即Ac
j
=ε
j
,(j=1,2,…,m),→A[c
1
c
2
… c
m
]=[ε
1
ε
2
…ε
m
]=E
m
,记C=[c
1
c
2
… c
m
],则有AC=E
m
,故m=r(E
m
)=r(AC)≤r(A)≤m,→r(A)=m;充分性:设r(A)=m,即A的行向量组线性无关,故[*]的行向量组线性无关,从而有[*]=m,由有解判定定理,知方程组Ax=b有解(其中[*]=[A | b]).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/9Nw4777K
0
考研数学一
相关试题推荐
设函数其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续。
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex-1|,证明|a1+2a2+…+nan|≤1.
设是正交矩阵,b>0,c>0求a,b,c的值;
设向量β=(b,1,1)T可由α1=(a,0,1)T,α2=(1,a-1,1)T,α3=(1,0,a)T线性表示,且表示方法不唯一,记A=(α1,α2,α3)。求a,b的值,并写出β由α1,α2,α3表示的线性表达式
向量组a1=[0,4,2-k],a2=[2,3-k,1],a3=[1-k,2,3]线性相关,则实数k=__________.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
随机试题
A、Theyfounditeasytocontroltheiremotions.B、Theystruggledtohandlenegativeemotions.C、Theyweremoreeagertoenjoya
(2021年德州齐河)借助图表、幻灯片等进行教学,是贯彻教学的()原则。
国际企业面临的外汇风险中,外汇波动对现行商务活动的短期现金流量的影响是【】
在甲状腺滤泡癌的诊断要点中,不包括:
婴儿期引起无热惊厥最常见的病因是
林某于2004年6月1日欠李某工程款8000元,并答应于2005年6月1日前还款,但直到2005年8月1日林某仍未还款。此后,李某除了在2006年5月10日向林某索要欠款外,再未找过林某。李某的诉讼时效应当到( )终止。
桥梁施工控制方法有()。
以下表述符合我国当代法学理论界对广义“法律”认识的是()。
Whichpassage(s)say(s)that….adultsputtoomuchemphasisonchildren’sintellectualdevelopment?
Don’tsuchscoressimplymeanthatIamverygoodatansweringthetypeofacademicquestionsthat______theintelligencetests?
最新回复
(
0
)