首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=∫0xsin2t/tdt,g(x)=∫0xsin2(x-t)dt,则当x→0时,g(x)是f(x)的( ).
设f(x)=∫0xsin2t/tdt,g(x)=∫0xsin2(x-t)dt,则当x→0时,g(x)是f(x)的( ).
admin
2022-03-31
78
问题
设f(x)=∫
0
x
sin
2
t/tdt,g(x)=∫
0
x
sin
2
(x-t)dt,则当x→0时,g(x)是f(x)的( ).
选项
A、高阶无穷小
B、低阶无穷小
C、同阶但非等价的无穷小
D、等价无穷小
答案
A
解析
转载请注明原文地址:https://www.kaotiyun.com/show/99R4777K
0
考研数学三
相关试题推荐
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求(Ⅰ)θ的矩估计;(Ⅱ)θ的最大似然估计.
(12年)已知函数f(χ)满足方程f〞(χ)+f′(χ)-2f(χ)=0及f〞(χ)+f(χ)=2eχ.(Ⅰ)求f(χ)的表达式;(Ⅱ)求曲线y=f(χ2)∫0χf(-t2)dt的拐点.
(15年)(Ⅰ)设函数u(χ),v(χ)可导,利用导数定义证明[u(χ)v(χ)]′=u′(χ)v(χ)+u(χ)v′(χ);(Ⅱ)设函数u1(χ),u2(χ),…,un(χ)可导,f(χ)=u1(χ)u2(χ)…un(χ),写出f(χ)的求导公
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xixj.二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值。
设f(x)可导,则当△x→0时,△y-dy是△x的().
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=f(x-t)dt,G(x)=xg(xt)dt,则当x→0时,F(x)是G(x)的().
随机试题
完全性葡萄胎最常见的症状是停经后阴道出血。
男,45岁。有肺结核史,近1个月来咳嗽、低热,痰中带血,胸片示:左肺上叶不张。若需手术治疗,最佳的手术方式为
正确使用肾上腺皮质激素类药物治疗复发性阿弗他溃疡的方法是
小儿哮喘急性发作期的治疗原则应为
在仲裁过程中,申请人向仲裁委员会申请财产保全的,仲裁委员会的下列做法中正确的是:()。
范某的下列有关骨科病预防与治疗方面研究成果中,哪些可在我国申请专利?
在冻土地基中确定基础的埋置深度时,在下列土中确定基底允许残留的冻土厚度由大到小排列的顺序是()。
A施工单位承建某新建单线铁路工程中有1座隧道工程长2600m,其余路段为路基土石方。根据设计图纸,正洞中围岩的绝大部分是Ⅱ级围岩,局部有节理较发育的Ⅲ级围岩,进口处50m为埋深较深且比较破碎的V级围岩,拟采用小断面弱爆破暗挖法,并辅助进行超前支护。出口处4
治安管理处罚中的拘留时间以天为单位,期限为1日以上,30日以下。( )
《大教学论》
最新回复
(
0
)