首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设n元线性方程组AX=b,其中 证明行列式∣A∣=(n+1)an
[2008年] 设n元线性方程组AX=b,其中 证明行列式∣A∣=(n+1)an
admin
2019-05-10
70
问题
[2008年] 设n元线性方程组AX=b,其中
证明行列式∣A∣=(n+1)a
n
选项
答案
可用命题2.1.1.3,也可用归纳法或行列式性质证之 证一 利用三对称行列式的结论证之.由命题2.1.1.3知 [*] =(n+1)a
n
. 故 ∣A∣=∣A
T
∣=(n+1)a
n
. 证二 用数学归纳法证之.当n=1时,∣A∣=∣2a∣=2a=(1+1)a
1
=2a,结论成立. 当n=2时,∣A∣=[*]=3a
2
,结论也成立. 假设结论对n-2,n-1阶行列式成立,则 ∣A∣
n-2
=(n一1)a
n-2
, ∣A∣
n-1
=na
n-1
. 将∣A∣按第1行展开,得到 ∣A∣
n
=2a∣A∣
n-1
一a
2
∣A∣
n-2
=2a·na
n-1
一a
2
·(n-1)a
n-2
=(n+1)a
n
, 即结论对n阶行列式仍成立.由数学归纳法原理知,对任何正整数n都有∣A∣=(n+1)a
n
. 证三 为方便计,令D
n
=∣A∣.将其按第1行展开,得到D
n
=2aD
n-1
一a
2
D
n-2
,即 D
n
一aD
n-1
=aD
n-1
一a
2
D
n-2
=a(D
n-1
一aD
n-2
) =a·a(D
n-2
一aD
n-3
)=a
2
(D
n-2
一aD
n-3
)=… =a
n-2
(D
2
一aD
1
)=a
n
. 故 D
n
=a
n
+aD
n-1
=a
n
+a(a
n-1
+aD
n-2
)=2a
n
+a
2
D
n-2
=… =(n一2)a
n
+a
n-2
D
2
=(n一2)a
n
+a
n-2
(a
2
+aD
1
) =(n一1)a
n
+a
n-1
D
1
=(n一1)a
n
+a
n-1
·2a=(n+1)a
n
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8jV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上二阶可导,且f〞(χ)>0,取χi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1χ1+k2χ2+…+knχn)≤k1f(χ1)+k2f(χ2)+…+knf(χn).
设A,B都是n阶可逆矩阵,则().
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTQ为对角矩阵.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
随机试题
男性患儿,7岁;无意中发现右上腹肿块,光滑、呈大结节状,无压痛;BP130/90mmHg;血红蛋白90g/L;血生化及电解质均正常。家长曾两次发现肿块明显小于平常所见。最合适的治疗方案为
债权人投保债务人的信用风险的,为保证保险;债务人为自己的信用投保的,是信用保险。()
下列关于沉井基础叙述正确的有()。
编译软件属于()。
以下关于期权交易的说法,正确的是()。[2010年6月真题]
( )是调整在国家与国际社会协调相关税收过程中所产生的国家涉外税收征纳关系和国家间税收分配关系的法律规范的总称。
接到带团任务后,导游工作的第一步是()。
数值型数据的分组方法有哪些?简述组距分组的步骤。
(2006年试题,一)设函数在x=0处连续,则a=__________.
Readthetextbelowaboutagreatgift.Inmostofthelines(34-45)thereisoneextraword.Itiseithergrammaticallyincorrect
最新回复
(
0
)