首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
设f(x)二阶可导,f(0)=f(1)=0且f(x)=-1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
admin
2018-05-21
68
问题
设f(x)二阶可导,f(0)=f(1)=0且
f(x)=-1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
选项
答案
因为f(x)在[0,1]上二阶可导,所以f(x)在[0,1]上连续且f(0)=f(1)=0,[*]f(x)=-1,由闭区间上连续函数最值定理知,f(x)在[0,1]取到最小值且最小值在(0,1)内达到,即存在c∈(0,1),使得f(c)=-1,再由费马定理知f’(c)=0, 根据泰勒公式 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,ξ
1
∈(0,C) f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,ξ
2
∈(c,1) 整理得 f"(ξ
1
)=2/c
2
,f"(ξ
2
)=2/(1-c)
2
. 当c∈(0,1/2]时,f"(ξ
1
)=2/c
2
≥8,取ξ=ξ
1
; 当c∈(1/2,1)时,f"(ξ
2
)=2/(1-c)
2
≥8,取ξ=ξ
2
. 所以存在ξ∈(0,1),使得f"(ξ)≥8.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8dr4777K
0
考研数学一
相关试题推荐
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ).
求锯二阶微分方程。
设函数f(x)在[0,+∞)内二阶可导,且f(0)=f’(0)=0,并当x>0时满足xf"(x)+3x[f’(x)]2≤1一e—x.证明当x>0时,f(x)<x2.
设常数k>0,函数f(x)=lnx一+k在(0,+∞)内零点个数为()
计算曲线积分I=,其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有∫(0,0)(t,1)2xyydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,求Q(x,y).
由曲线y=1一(x一1)2及直线y=0围成图形(如图3—1所示)绕y轴旋转而成的立体的体积V是()
函数f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最小值是_________.
设在上半平面D={(x,y)|y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t—2一f(x,y).证明对D内的任意分段光滑的有向简单闭曲线L,都有∮Lyf(x,y)dx一xf(x,y)dy=0.
随机试题
蓝牙主要特点有:______、功耗低、成本低、抗干扰能力强,同时可传输话音和数据,可以建立临时性的对等连接、具有开放的接口标准等。
慢性闭锁性牙髓炎的临床表现如下,除外
工作场所健康促进的本质是()
桥梁两端两个桥台的侧墙或八字墙后端点之间的距离称为()。[2006年真题]
“折价交易的封闭式基金收益率较高”属于事件异常的表现。( )
1935年2月,我国影片《渔光曲》获莫斯科第( )届国际电影展览会“荣誉奖状”。《渔光曲》由联华影业公司摄制,蔡楚生编导。
下列选项中,属于我国法的正式解释的有()。(2014法多22)
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
WhatarethechallengesfacingmultinationalsthatwanttobuildtheirbrandsinChina?—Ithinkthefirstthingisignorance.T
Whenstudyinghumantalent,thetemptationisusuallytoconcentrateontheupperreaches.Understandablyso:wealladmirethe
最新回复
(
0
)