首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
admin
2019-11-25
106
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得f(c)=
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*],构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上 n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
(1)
1
∈(a
1
,c),ξ
(1)
2
∈(c,a
2
),…,ξ
(1)
n
∈(a
n-1
,a
n
),使得φ’(ξ
(1)
1
)= φ’(ξ
(1)
2
)=…=φ’(ξ
(1)
n
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定 理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有f(c)=[*]f
(n)
(ξ).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/8ED4777K
0
考研数学三
相关试题推荐
设xn(1一x)ndx,n=1,2,3,….证明级数收敛,并求其和.
设x<1且x≠0.证明:
设随机变量X1,X2,…,X100独立同分布,且EXi=0,DXi=10,i=1,2,…,100,令
设X1,X2,…,Xn为来自总体X的一个简单随机样本,X的概率密度为(1)求θ的矩估计量(2)求θ的最大似然估计量
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程
讨论方程axex+b=0(a>0)实根的情况.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界.证明:f’(x)在(一∞,+∞)内有界.
设平面区域D={(x,y)|x2+y2≤8,y≥},求二重积分
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
随机试题
具有不确定货物的装卸时间,“四固定”特点的海洋运输方式是()
以下不属于企业文化隐性内餐的是()
王昌龄《从军行》(其四)主要是表现戍边将士()
A.肝细胞肝癌B.伯基特淋巴瘤C.慢性粒细胞白血病D.胃黏液癌E.子宫颈癌与EB病毒感染发生有关的是
骨骼肌中的调节蛋白质指
深圳证券交易所对上市开放式基金交易价格涨跌幅比例为5%,自上市首日起实行。( )
据某市人力资源和社会保障部门统计,该市今年高校毕业生就业率和去年相比有了明显的下降。专家认为,这是因为很多企业将学历的要求由本科提升至了研究生。以下哪项如果为真,最能支持上述结论?()
2,1,,()。
使用输入输出操作符setw,可以控制()。
Withthepossibleexceptionofequalrights,perhapsthemostcontroversialissueacrosstheUnitedStatestodayisthedeathpe
最新回复
(
0
)