首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0. 求α和二次型xTAx的表达式;
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0. 求α和二次型xTAx的表达式;
admin
2021-02-25
96
问题
已知A是3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.
求α和二次型x
T
Ax的表达式;
选项
答案
由Aα
1
=0=0α
1
,Aα
2
=0=0α
2
,知λ
1
=λ
2
=0是矩阵A的特征值,α
1
,α
2
是矩阵A的属于特征值0的线性无关的特征向量.由已知Aα=6α,且α≠0,所以λ
3
=6是A的特征值,设α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同的特征值对应的特征向量正交,于是 [*] 解得λ
3
=6的一个特征向量为α=(1,2,-1)
T
. 由A(α
1
,α
2
,α)=(0,0,6α),得 [*] 故 f=x
T
Ax=x
2
1
+4x
2
2
+x
2
3
+4x
1
x
2
-2x
1
x
3
-4x
2
x
3
.
解析
本题考查用正交变换化二次型为标准形的逆问题.
转载请注明原文地址:https://www.kaotiyun.com/show/7l84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为l6πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(z)的方程.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.证明:在[一a,a]上存在η,使
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)存在c∈(a,b),使得f(c)=0;(2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=
设x≥0,证明ln(1+x)≥
向量组β1,β2,…,βt可由向量组α1,α2,…,αs线性表出,设表出关系为[β1,β2,…,βt]=[α1,α2,…,αs][α1,α2,…,αs]C.若α1,α2,…,αs线性无关,证明:r(β1,β2,…,βt)=r(C).
(1)由方程sinχy+ln(y-χ)=χ确定函数y=y(χ),求.(2)设f(χ)=,求df(χ)|χ=0.(3)设y=y(χ)是由eχ-χ+y-2=0确定的隐函数,则y〞(0)=_______.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
设f(u,v)具有二阶连续偏导数,且满=1,又g(χ,y)=f(χy,),求
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
随机试题
下图诊断为:()
巨额财产来源不明罪,是指国家工作人员的财产、支出明显超过合法收入,差额巨大,_______的行为。
试述胆管系的组成和胆汁的排出途径。
假设检验时,若α=0.05,则下列关于检验结果的说法正确的是
患者,女,30岁。夏季因贪凉,多食冷饮、冰镇水果。结果出现腹痛腹泻、头晕头痛等症状。医生诊断为阴暑证。根据患者病症,可推荐使用
典型心绞痛发作的部位常位于
关于境内上市及境外上市的主要市场,以下表述错误的是()。
利群偏差指的是人们对自己的群体成员的行为总是倾向于给予善意的理解,而在解释其他群体成员的类似行为时,更容易从坏的角度去设想。根据上述定义,下列存在利群偏差的是()。
海南岛上最早的居民是()人。
为预防旅游者在旅游期间物品丢失,导游人员应该()。
最新回复
(
0
)