首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞]上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e一x≤f(x)≤1.
函数f(x)在[0,+∞]上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e一x≤f(x)≤1.
admin
2017-04-24
96
问题
函数f(x)在[0,+∞]上可导,f(0)=1,且满足等式f’(x)+f(x)一
∫
0
x
f(t)dt=0
(1)求导数f’(x);
(2)证明:当x≥0时,成立不等式:e
一x
≤f(x)≤1.
选项
答案
(1)由题设知 (x+1)f’(x)+(x+1)f(x)一∫
0
x
f(t)dt=0 上式两边对x求导,得(x+1)f"(x)=一(x+2)f’(x) 设u=f’(x),则有[*] 解得 f’(x)=u=[*] 由f(0)=1,及f’(0)+f(0)=0,知f’(0)=一1,从而C=一1. 因此 [*] (2)当x≥0时,f’(x)<0,即f(x)单调减少,又f(0)=1,所以f(x)≤f(0)=1 设 φ(x)=f(x)一 e
一x
则 φ(0)=0,φ’(x)≥0,即φ(x)单调增加,因而 φ(x)≥φ(0)=0,即有f(x)≥e
一x
综上所述,当x≥0时,成立不等式e
一x
≤f (x)≤1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7jt4777K
0
考研数学二
相关试题推荐
某公司通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验方式:R=15+4x1+32x2-8x1x2-2x12-10x22若提供的广告费用是1.5万元
设f(x,y,z)是k次齐次函数,即f(tx,ty,tz)=tkf(x,y,z),λ为某一常数,则结论正确的是________。
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
A、连续但不可导B、可导但导数不连续C、导数连续D
A、f(2)是f(x)的极小值B、f(2)是f(x)的极大值C、(2,f(2))是曲线y=f(x)的拐点D、f(2)不是函数f(x)的极值,(2,f(2))也不是曲线y=f(x)的拐点A
求由ex+y-sinxy=e确定的曲线y=y(x)在点(0,1)处的切线.
求曲线y=f(x)=(x2+x-2)/(x2-1)e1/x的渐近线.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
设y=y(x)是区间[-π,π]内过的光滑曲线,当-π<x<0时,曲线上任一点处的法线都过原点,当0≤x≤π时,函数y(x)满足y"+y+x=0,求y(x)的表达式。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).求L的方程。
随机试题
注册会计师对存货监盘实施的替代审计程序主要包括()
超量服用可引起急性中毒性肝损坏的药物是长期应用可引起视力模糊和中毒性弱视的药物是
某工程网络图如下图所示,监理工程师在第3天末检查进度,则( )。
关于经营杠杆和财务杠杆,下列表述正确的有()。
公司召开一个重要会议,小张又迟到了。公司王经理批评他说:“小张,你为什么又迟到啦?”小张解释说:“因为来晚了,所以迟到了。”以下哪项陈述正确描述了上文推论中的错误?()
造成通货紧缩的原因有()。
下列哪位不是元曲四大家?()
某公司计划全年完成收入2907万元,前八个月完成了2131万元,请问这个公司前八个月完成了计划的比例为多少?()
在TCP/IP网络中,为各种公共服务保留的端口号范围是1~1024。Telnet用做Internet远程登录,它通常使用的端口是(31)。
A、Theworldofblogwritersandblogreaders.B、Theblogsthatarereadbysomanypeople.C、Theatmospherecreatedbytheblog
最新回复
(
0
)