首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续的偶函数,F(x)为f(x)的原函数,且∫-11F(x)dx=0,求F(x).
设f(x)为连续的偶函数,F(x)为f(x)的原函数,且∫-11F(x)dx=0,求F(x).
admin
2017-05-31
81
问题
设f(x)为连续的偶函数,F(x)为f(x)的原函数,且∫
-1
1
F(x)dx=0,求F(x).
选项
答案
由f(x)为连续的偶函数可知,∫
0
x
f(t)dt=为奇函数,且F(x)=∫
0
x
f(t)dt+c
0
又 ∫
-1
1
F(x)dx=∫
-1
1
[∫
0
x
f(t)dt+c
0
]dx=2c
0
=0, 所以,F(x)=∫
0
x
f(t)dt.
解析
若f(x)连续,则由
F(一x)=∫
0
-x
f(t)dt
∫
0
u
f(一u)du
可知,f(x)为连续的奇(偶)函数<=>F(x)为偶(奇)函数.
对f(x)的任一原函数有:
(1)f(x)为连续的奇函数<=>∫
a
x
f(t)dt为偶函数.
(2)f(x)为连续的偶函数时,∫
a
x
f(t)dt是奇函数<=>∫
-a
a
f(x)dx=0.
转载请注明原文地址:https://www.kaotiyun.com/show/7iu4777K
0
考研数学一
相关试题推荐
[*]
证明方程lnx=x-e在(1,e2)内必有实根.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
求极限,其中n是给定的自然数.
(2006年试题,一)点(2,1,0)到平面3x+4y+5z=0的距离d=____________.
设离散型二维随机变量(X,Y)的取值为(xi,yi)(i,j=1,2),且试求:X与Y的相关系数ρxy;
已知极限求常数a,b,c.
随机试题
病案书写要求不包括【】
A.仔猪黄痢B.仔猪白痢C.猪痢疾D.猪传染性胃肠炎E.猪流行性腹泻主要发生于冬季,大小猪都可发生,呕吐,拉水样稀粪,粪便中含有未消化的饲料颗粒,小肠绒毛膜与隐窝的比例由7:1变为1:1,该病可能是()。
当归苁蓉汤主要用于
子宫内膜脱落不全可见无排卵型出血可见
结构的可靠性可概括为()等方面。
技术方案经济效果评价中的计算期包括技术方案的()。
增值税的基本税率为()。
2014年初,甲公司经营陷入困境。面对困境,甲公司采取了以下措施:高管减薪,加强广告宣传,委托其他公司生产本公司的产品。这些措施所体现的收缩战略的方式有()。(2014年)
与建立存货保险储备量无关的因素是()。
我国物权法规定林地的承包期为()
最新回复
(
0
)