首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
admin
2021-11-09
69
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k-1
线性表示。
选项
答案
因为向量组α
1
,α
2
,…,α
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使 λ
1
a
1
,λ
2
a
2
,…,λ
m
a
m
=0。 因λ
1
,λ
2
,…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
=…=λ
m
=0。 当k=1时,代入上式有λ
1
a
1
=0.又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有 [*] 因此向量a
k
能由a
1
,a
2
,…,a
k-1
线性表示。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7cy4777K
0
考研数学二
相关试题推荐
设微分方程y〞-3y′+ay=-5e-χ的特解形式为Aχe-χ,则其通解为_______.
证明:1+χln(χ+)≥.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D。若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x).
微分方程的通解为__________.
设函数f(x)(x≥0)可微,且f(x)﹥0,将曲线y=f(x),x=1,x=a(a﹥1)及x轴所围成的平面图形绕x轴旋转一周得旋转体体积为.若f(1)=.求f(x)的极值。
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设函数z=f(u),方程确定u为x,y的函数,其中f(u),Φ(u)可微,P(t),Φ’(x)连续,且Φ’(u)≠1,求.
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
随机试题
WhatelseistheOralApproachreferredtoas?
不属于三期梅毒的病变是
主动脉瓣关闭不全时周围血管征包括
降低心脏前负荷时可以选用的药物是
下列有关靶向给药系统的叙述中,错误的是
在资金来源结构变化,尤其是市场利率变化的条件下,以资金平均成本作为新贷款定价的基础较为合适。()
某投资者李预期甲股票价格将会下跌,于是与另一投资者张订立卖出合约,合约规定有效期限为三个月,李可按每股10元的价格卖给张5000股甲股票,期权价格为0.5元/股。根据上述情况,下面说法正确的是()。
求曲线y=x4一2x3+1的凹凸区间和拐点.
在面向对象方法中,不属于“对象”基本特点的是()。
Threemonths____________(自从我到这,已有三个月了).
最新回复
(
0
)