首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数. 求P(X=1|Z=0);
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数. 求P(X=1|Z=0);
admin
2019-05-11
140
问题
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数.
求P(X=1|Z=0);
选项
答案
解一 P(Z=0)=P(两次取球都没有取到白球),该事件包括下述几种情况(考虑取球的次序):{X=1,Y=1}={第一次取到一红球,第二次取到一黑球}+{第一次取到一黑球,第二次取到一红球},共有C
1
1
C
2
1
+C
2
1
C
1
1
=4种取法; {X=2,Y=0}={第一次取到一红球,第二次取到一红球},共有C
1
1
C
1
1
=1种取法; {X=0,Y=2}={第一次取到一黑球,第二次取到一黑球},共有C
1
1
C
2
1
=4种取法. 由命题3.3.1.2知,两次取球有放回,每次取一个,取两次的样本空间Ω共含有n
m
=6
2
个样本点,故P(Z=0)=(C
1
1
C
2
1
+C
2
1
C
1
1
+C
1
1
C
1
21
+C
2
1
C
2
1
)/6
2
=9/36=1/4,又 P(X=1,Z=0)=P(X=1,Y=1)=(C
1
1
C
2
1
+C
2
1
C
1
1
)/6
2
=1/9. 故 P(X=1|Z=0)=P(X=1,Z=0)/P(Z=0)=(1/9)/(1/4)=4/9. 解二 P(X=1|Z=0)=P(在没有取到白球的情况下,取到一次红球),也可利用缩减样本空间法求得P(X=1|Z=0)=(C
1
1
C
2
1
+C
2
1
C
1
1
)/3
2
=4/9. 注:命题3.3.1.2 从n个不同元素中按照有放回且计序的要求从中取出m(m≤n)个,这时得到的样本空间设为Ω,则此样本空间Ω共含有n
m
个样本点,即从n个不同元素中取m个的允许重复的排列的种数为n
m
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7bJ4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为X1,…,Xn为来自X的一个简单随机样本,求θ的矩估计量。
假设随机变量X1,X2,X3,X4相互独立且都服从0一1分布:P{Xi=1}=p,P{Xi=0}=1一p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
袋中有12只球,其中红球4个,白球8个,从中一次抽取2个球,求下列事件发生的概率:(1)2个球中1个是红球1个是白球;(2)2个球颜色相同.
随机变量X的密度函数为f(x)=ke-|x|(-∞<x<+∞),则E(X2)=______.
甲、乙两人从1,2,…,15中各取一个数,设甲取到的数是5的倍数,求甲数大于乙数的概率.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
由定积分的奇偶性得[*]
随机试题
A.豚鼠B.小鼠C.大鼠D.狗E.家兔皮肤过敏试验首选的实验动物是()
依法可能成为附带民事诉讼原告人的有:()
下列对结构的作用不属于可变荷载范畴的是()。
编制措施项目清单时应依据( )。
根据《票据法》规定,背书不得记载的事项包括()。
下列犯罪中属于告诉才处理的犯罪有()。
《中国少年先锋队队歌》是儿童影片《英雄小八路》的主题歌,原名_________。
行政机关公务员对处分不服向行政监察机关申诉的,按照《行政诉讼法》的规定办理。()
VB中,若没有显式声明变量的数据类型,则默认的类型是()。
(1)It’s7pmonabalmySaturdaynightinJune,andIhavejustorderedmyfirstbeerinICervejaria,arestaurantinZambujeir
最新回复
(
0
)