首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,C∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,C∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得.
admin
2017-08-31
63
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,C∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
.
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*], 构造辅助函数φ(x)=f(x)一k(x-a
1
)(x—a
2
)…(x一a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ
’
(ξ
1
(1)
)=φ
’
(ξ
1
(1)
)=…=φ
’
(ξ
n
(1)
)=0,φ
’
(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
’
(c
2
)=0,再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)一n!k,所以f
(n)
(ξ)=n!k,从而有f(c)=[*]f
(n)
(ξ).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/7Dr4777K
0
考研数学一
相关试题推荐
微分方程yy"=y2y’+y’2满足y(0)=1,y’(0)=2的特解为______.
设X1,X2,X3,…,Xn是来自正态总体N(μ,σ2)的简单随机变量,是样本均值,记S12=则服从自由度为n-1的t分布的随机变量为().
10件产品中有3件产品为次品,从中任取2件,已知所取的2件产品中有一件是次品,则另一件也为次品的概率为_______.
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的联合密度函数为fY|X(y|x)=(Ⅰ)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=(x0,y0=0,(x0,y0>0,(x0,y0)
设Ω是由曲面y2+x2=1,|x+y|=1,|x-y|=1围成,则Ω的体积V=_______.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设函数f(x)在x=0处连续,下列命题错误的是
试讨论函数g(x)=在点x=0处的连续性.
随机试题
胶囊剂的崩解时限为
患者,女,10岁。发热4天,伴有咳嗽,全腹疼痛。查体:体温38℃~39℃,右下肺有湿啰音,全腹轻度腹胀,腹肌紧张,压痛,反跳痛,肠鸣音减弱。腹腔穿刺抽出无臭味脓汁。诊断为腹部感染合并原发性腹膜炎。该患儿腹腔脓液涂片镜检最有可能检出的致病菌是
通常,指北针圆的直径为()mm。
土地制度是指在特定的社会经济条件下土地关系的总称,是一个国家人地关系的法定结合形式,它包括()、()、()。
下列()应该计入进口货物的完税价格。
在( )条件下,加权算术平均数等于简单算术平均数。
人生的基本活动模式有认知、__________和伦理。
2005年5月9日证监会推出的股权分置改革首批试点公司有
Whenmywife,Meg,sufferedaseverestrokethatimmobilizedherleftside,Iknewwewouldbefacingagruelingodysseyinvol
A、Abusinessman.B、Awriter.C、Apainter.D、Afreelancejournalist.D
最新回复
(
0
)