首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
AB=0,A,B是两个非零矩阵,则
AB=0,A,B是两个非零矩阵,则
admin
2018-11-23
49
问题
AB=0,A,B是两个非零矩阵,则
选项
A、A的列向量组线性相关.B的行向量组线性相关.
B、A的列向量组线性相关.B的列向量组线性相关.
C、A的行向量组线性相关.B的行向量组线性相关.
D、A的行向量组线性相关.B的列向量组线性相关.
答案
A
解析
设A是m×n矩阵,B是n×s矩阵,则由AB=0得到r(A)+(B)≤n.由于A,B都不是零矩阵,r(A)>0,r(B)>0.于是r(A)<n,r(B)<n.n是A的列数,B的行数,因此A的列向量组线性相关.B的行向量组线性相关.
转载请注明原文地址:https://www.kaotiyun.com/show/76M4777K
0
考研数学一
相关试题推荐
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设二次型一4x1x2一4x1x3+2ax2x3经正交变换化为,求a,b的值及所用正交变换.
已知A=,且A~B,求a,b,c的值.
设函数f(x)在x=x0处存在f′+(x0)与f′-(x0),但f′+(x0)≠f′-(x0),说明这一事实的几何意义.
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
证明f(x)=sinx-x在(-∞,+∞)上严格单调减少.
设f(u,v)为二元可微函数,z=f(xy,yx),则=_________.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________
(01年)已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP-1;(2)计算行列式|A+E|.
随机试题
试各举一例说明语法与语音、语汇、修辞、语境、逻辑等现象之间有一定的关系。
A公司发行在外的普通股1亿股,2011年的净利润8000万元,期初未分配利润10000万元,当期宣告发放现金股利4000万元,则该公司的2011年股利支付率是()
男孩,5岁,浮肿4d,气促1d伴尿少,尿色深。查体:R32/min,心音增强,两肺底部无湿性啰音,肝肋下2cm,BP150/90mmHg,首先考虑诊断是根据目前病情,首选的治疗是
以紫外分光光度法测定注射用硫喷妥钠含量时所选用的对照品是( )。
护理危重病人,下列哪项措施是错误的
下列选项中,可以作为合伙企业中普通合伙人的是()。
第二次世界大战期间,明确规定将台湾、澎湖列岛归还中国的有关国际条约是()。
【2012甘肃NO.25】《三国演义》《水浒传》《西游记》都是总结型的杰作,作者总结了群众世代积累的艺术智慧,使之达到无可增损的__________程度。其中《西游记》在总结型小说中又带有一定成分的__________意义,它改变了长篇小说宋元以来的演史传
电视是现代文明的产物,但也给人们带来很多麻烦。对于有孩子的家庭,来自电视节目正反两方面的诱惑力都很大。电视看久了,也会影响学习。更使家长担心的是电视中的暴力片等的副作用。因此,家长应对孩子看电视给予指导与约束。以下哪种做法与以上观点不符?
Theexistenceofghostsmaybedebated.ButtheimpactoftraditionalAsianbeliefsonThailand’stourismtradesincetheDecemb
最新回复
(
0
)