首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
设f(x)=(akcoskx+bksinkx),其中ak,bk(k=1,2,…,n)为常数.证明: (Ⅰ)f(x)在[0,2π)必有两个相异的零点; (Ⅱ)f(m)(x)在[0,2π)也必有两个相异的零点.
admin
2018-11-21
112
问题
设f(x)=
(a
k
coskx+b
k
sinkx),其中a
k
,b
k
(k=1,2,…,n)为常数.证明:
(Ⅰ)f(x)在[0,2π)必有两个相异的零点;
(Ⅱ)f
(m)
(x)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(x)=[*],显然,F’(x)=f(x).由于F(x)是以2π为周期的可导函数,故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(一∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F’(x
1
)=f(x
1
)=0,F’(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=[*](α
k
coskx+β
k
sinkx),其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(x)在[0,2π)必有两个相异的零点.
解析
即证:f(x)=
在[0,2π)存在两个相异零点.只要证
在[0,2π)有两个极值点.注意:F(x)是周期为2π的周期函数,F(x)在[0,2π)的最大与最小值点也是F(x)在(一∞,+∞)上的最大与最小值点,因而必是极值点.
转载请注明原文地址:https://www.kaotiyun.com/show/6pg4777K
0
考研数学一
相关试题推荐
设f(x)=若f(x)在x=1处可导,则α的取值范围是____________.
设f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x)≤0.证明函数F(x)=f(t)dt在(a,b)内也有F′(x)≤0.
向量v=xi+yi+zk穿过封闭圆锥曲面z2=x2+y2,0≤z≤h的流量等于___________.
设平面π的方程为2x—y+z一2=0,直线l的方程为则π与l的位置关系是__________.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组Ax=b的通解X=().
设随机变量X和y的联合分布函数为则随机变量X的分布函数F(x)为______。
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);(Ⅲ)
设方阵A1与B1合同,A2与B2合同,证明:合同。
设,对于该曲线积分容易验证(x2+y2≠0),则()
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是________。
随机试题
下列地基处理方法中,最常用最经济的深层地基处理方法是()。
医院健康教育的意义有【】
曹植、曹丕散文的特点是【】
企业一般使用流动负债解决流动资金需求,使用权益资金或长期债务支持长期资金需求的资本结构是
若用户操作时,不小心误删了本机硬盘中的某个文件或文件夹,可在______里把它恢复。
心肝血虚证见不到
A公司注册资本总额为100万元,收到乙公司投入的现金24万元,在注册资本中占20%的份额,A公司进行账务处理时,可能涉及的科目有()。
旋转式变流机()
合同双方当事人在合同中没有明确是定金的,应视为预收款。()
Thinkingsmall,beingengaging,andhavingasenseofhumordon’thurt.Thoseareafewofthetraitsofsuccessfulsciencecrow
最新回复
(
0
)