首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)2+(b1χ2+b2χ2+b3χ3)2, 记 (1)证明二次型f对应的矩阵为2ααT+ββT; (2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12
设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)2+(b1χ2+b2χ2+b3χ3)2, 记 (1)证明二次型f对应的矩阵为2ααT+ββT; (2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12
admin
2016-05-09
67
问题
设二次型f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
2
+b
2
χ
2
+b
3
χ
3
)
2
,
记
(1)证明二次型f对应的矩阵为2αα
T
+ββ
T
;
(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(1)f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)
2
+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
=2(χ
1
,χ
2
,χ
3
)[*](a
1
,a
2
,a
3
)[*]+(χ
1
,χ
2
,χ
3
)[*](b
1
,b
2
,b
3
)[*] =(χ
1
,χ
2
,χ
3
)(2αα
T
)[*]+(χ
1
,χ
2
,χ
3
)(ββ
T
)[*] =(χ
1
,χ
2
,χ
3
)(2αα
T
+ββ
T
)[*] 所以二次型f对应的矩阵为2αα
T
+ββ
T
. (2)设A=2αα
T
+ββ
T
,由|α|=1,β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量. 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值.故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/6gw4777K
0
考研数学一
相关试题推荐
设f(χ)=则f(χ)在χ=0处().
设f(x1,x2,x3)=(ax1+2x2-3x3)+(x2-2x3)+(x1十ax2-x3)2是正定二次型,则()
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设向量=(1,1,﹣1)T是A=的一个特征向量求a,b的值;
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
设向量组(Ⅰ):a1,a2,…,ar可由向量组(Ⅱ):β1,β2,…,βs线性表示,则().
设A为三阶方阵,A*为A的伴随矩阵,|A|=1/3,求|4A-(3A*)-1|.
随机试题
下列各证不可误投白虎汤的是()(1992年第150题)
试述教育实验研究的一般程序。
风湿热患儿环形红斑的发生率为
企业法律顾问在企业重大经营决策方面的作用主要体现为()。
厌氧生物滤池()。
某企业计划在2015年年末购人一台价值为2000万元的新设备,若筹款年利率为10%,则2012年至2014年每年年末应等额筹款()万元。(注:(A/F,10%,4)=O.21547,(A/F,10%,3)=O.30211,(A/P,10%,3)=0
附有销售退回条件的商品销售,如果可以合理估计退货比例,则应于资产负债表日预计退货,冲减主营业务收入和主营业务成本,差额(即利润)确认为“预计负债”并于实际退货发生时进行结转。()
已知函数f(x)=(1一tanx)[1+]求:函数f(x)的图象可以由函数y=cos(2x一)的图象经过怎样的变换得到.
Kidsspendanincreasingfractionoftheirformativeyearsonline.Itisahabittheydutifully【C1】______intoadulthood.Undert
Theageofrequiringretirementincompaniesshouldberaised,andso【M1】______shouldtheagetobeginSocialSecurity.First
最新回复
(
0
)