首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)设F(χ)=f(χ)g(χ),其中函数f(χ),g(χ)在(-∞,+∞)内满足以下条件: f′(χ)=g(χ),g′(χ)=f(χ),且f(0)=0,f(χ)+g(χ)=2eχ. (1)求F(χ)所满足的一阶方程; (2)
(03年)设F(χ)=f(χ)g(χ),其中函数f(χ),g(χ)在(-∞,+∞)内满足以下条件: f′(χ)=g(χ),g′(χ)=f(χ),且f(0)=0,f(χ)+g(χ)=2eχ. (1)求F(χ)所满足的一阶方程; (2)
admin
2019-03-19
89
问题
(03年)设F(χ)=f(χ)g(χ),其中函数f(χ),g(χ)在(-∞,+∞)内满足以下条件:
f′(χ)=g(χ),g′(χ)=f(χ),且f(0)=0,f(χ)+g(χ)=2e
χ
.
(1)求F(χ)所满足的一阶方程;
(2)求出F(χ)的表达式.
选项
答案
(1)由F′(χ)=f′(χ)g(χ)+f(χ)g′(χ)=g
2
(χ)+f
2
(χ) =[f(χ)+g(χ)]
2
-2f(χ)g(χ) =4e
2χ
-2F(χ) 则F(χ)所满足的一阶方程为 F′(χ)+2F(χ)=4e
2χ
(2)方程F′(χ)+2F(χ)=4e
2χ
是一个一阶线性方程,由求解公式得 F(χ)=e
-∫2dχ
[∫4e
2χ
.e
∫2dχ
dχ+C] =e
2χ
+Ce
-2χ
将F(0)=f(0)g(0)=0代入上式得C=-1 故F(χ)=e
2χ
-e
-2χ
解析
转载请注明原文地址:https://www.kaotiyun.com/show/6eP4777K
0
考研数学三
相关试题推荐
设函数z=z(x,y)由方程(z+y)x=xy确定,则|(1,2)=________。
设(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)。(Ⅰ)证明xn存在,并求该极限;(Ⅱ)计算
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。(Ⅰ)写出f(x)在[—2,0)上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导。
1利用等价无穷小量替换将极限式进行化简,即
设问k为何值,可使:(Ⅰ)r(A)=1;(Ⅱ)r(A)=2;(Ⅲ)r(A)=3。
设α1,α1,…,αm,β1,β2,…,αm,γ线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
随机试题
下列哪些情况应剖胸探查()
甲状旁腺素的主要功能在于升高血钙和降低血磷,其发挥作用的靶器官主要是
如果经审查认为符合条件的,仲裁委员会应当通知申请人,通知的方式有()。
空气泡沫也称________。()
商业银行查询个人信用报告时应当取得被查询人的()。
简述常用的德育方法。
郭甲是运煤司机,一日运煤经过309国道某交通检查站时,执勤人员宋丙(身着交通警察制服,佩带执勤袖章)向郭甲走过来,递给了郭甲一张处罚决定书,说:“交20块钱再走。”郭甲接过处罚决定书,见上面印的全部内容是:根据有关规定,罚款20元。决定书印着某省某市交通大
关于动机强度与学习效率关系表述正确的是
Inthispart,youareaskedtowriteanessayaccordingtotheinformationbelow.Youshouldwritemorethan150wordsneatlyon
Nospecieshasdevelopedacloserrelationshipwithhumanitythanthedog,thoughcat-loversmaydisagree.Butthatrelationship
最新回复
(
0
)