首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵并且AB=0,求齐次线性方程组AX=0的通解.
admin
2019-01-23
87
问题
已知3阶矩阵A的第一行为(a,b,c),a,b,C不全为0,矩阵
并且AB=0,求齐次线性方程组AX=0的通解.
选项
答案
由于AB=0,r(A)+r(B)≤3,并且B的3个列向量都是AX=0的解. (1)若k≠9,则r(B)=2,r(A)=1,AX=0的基础解系应该包含两个解.(1,2,3)
T
和(3,6,k)
T
都是解,并且它们线性无关,从而构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(3,6,k)
T
,其中c
1
,c
2
任意. (2)如果k=9,则r(B)=1,r(A)=1或2. ①r(A)=2,则AX=0的基础解系应该包含一个解,(1,2,3)
T
构成基础解系,通解为: c(1,2,3)
T
,其中c任意. ②r(A)=1,则AX=0的基础解系包含两个解,而此时曰的3个列向量两两相关,不能用其中的两个构成基础解系. 由r(A)=1,A的行向量组的秩为1,第一个行向量(a,b,c)(≠0!)构成最大无关组,因此第二,三个行向量都是(a,b,c)的倍数,从而AX=0和方程ax
1
+bx
2
+cx
3
=0同解.由于(1,2,3)
T
是解,有a+2b+3c=0,则a,b不都为0(否则a,b,c都为0),于是(b,一a,0)
T
也是ax
1
+bx
2
+cx
3
=0的一个非零解,它和(1,2,3)
T
线性无关,一起构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(b,一a,0)
T
,其中c
1
,c
2
任意.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/60M4777K
0
考研数学一
相关试题推荐
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是λ属于λ=6的特征向量,求矩阵A。
设n元线性方程组Aχ=b,其中(1)当a为何值时,该方程组有唯一解,并求χ1;(2)当a为何值时,该方程组有无穷多解,并求通解.
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸弧AB上的任意点(图6.4).已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
利用函数奇偶性计算下列积分:
假设一厂家生产的每台仪器以概率0.7可直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可出厂,概率0.2不合格而不能出厂,现该厂生产n(n≥2)台仪器(设仪器生产过程相互独立).至少有两台不能出厂的概率;
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
极限=().
随机试题
TelevisionhastransformedpoliticsintheUnitedStatesbychangingthewayinwhichinformationisdisseminated,byalteringp
高血压病人麻醉前应
下列导致医院感染高度危险性的物品是
下列叙述正确的是
在感染性休克的治疗中,下列哪项是错误的
办理商品房预售证明时,应出具投入资金达到工程建设总投资()以上的证明。
入境旅游团抵达人住饭店后,地陪要协助领队和全陪办理住店手续,但不要()。
在下列模式中,能够给出数据库物理存储结构与物理存取方法的是()。
•Readthearticleaboutchoosinganagent.•Inmostofthelines34~45thereisoneextraword.Itiseithergrammaticallyincor
(1)Theurbanpopulationin2014accountedfor54%ofthetotalglobalpopulation,upfrom34%in1960,andcontinuestogrow.I
最新回复
(
0
)