首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设微分方程xy′+2y=2(ex-1). (Ⅰ)求上述微分方程的通解,并求使y(x)存在的那个解(将该解记为y0(x)),以及极限值y0(x); (Ⅱ)补充定义之后使y0(x)在x=0处连续,求y′0(x),并请证明:无论x=0还是x≠0,y′0(x)均连
设微分方程xy′+2y=2(ex-1). (Ⅰ)求上述微分方程的通解,并求使y(x)存在的那个解(将该解记为y0(x)),以及极限值y0(x); (Ⅱ)补充定义之后使y0(x)在x=0处连续,求y′0(x),并请证明:无论x=0还是x≠0,y′0(x)均连
admin
2016-07-22
95
问题
设微分方程xy′+2y=2(e
x
-1).
(Ⅰ)求上述微分方程的通解,并求使
y(x)存在的那个解(将该解记为y
0
(x)),以及极限值
y
0
(x);
(Ⅱ)补充定义之后使y
0
(x)在x=0处连续,求y′
0
(x),并请证明:无论x=0还是x≠0,y′
0
(x)均连续.
选项
答案
(Ⅰ)当x≠0时,原方程化为 y′+[*] 由一阶线性方程的通解公式,得通解 [*] 其中C为任意常数. 由上述表达式可知,[*]y(x)存在的必要条件是 [*](2xe
x
-2e
x
-x
2
+C)=0,即C=2. 当C=2时,对应的y(x)记为y
0
(x)=[*], [*] (Ⅱ)令 [*] 而当x≠0时, [*] 所以 [*]y′
0
(x)=y′
0
(0), y′
0
在x=0处连续,又y′
0
(x)在x≠0处也连续(初等函数),故无论x=0还是x≠0, [*] 均连续.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/5SbD777K
0
考研数学二
相关试题推荐
“勿以恶小而为之,勿以善小而不为”这句名言出自()。
工具性攻击行为,是指有目标指导(攻击是作为达到目标的工具)和认识基础的攻击。根据该定义,下列属于工具性攻击行为的是()。
因果型预测方法,是指依据事物运动变化的因果关系,由已知原因的“脉络”估测未来结果的一种预测方法。根据上述定义,下列选项中运用了因果型预测方法的是()。
有一列数,第一个数为8,第二个数为4,从第二个数起,它们的每个数都比它前后相邻的两数的和少5,从第一个数到第2003个数的和是()。
消化不良:长期的饮食不规律、爱吃刺激性食物、或者暴饮暴食,而导致的腹部不适的症状。根据上述定义,以下哪项不是消化不良的表现?()
下列关于区域经济的表述不正确的是()。
改革开放以来,我国主要区域政策经历了不同的阶段:①以经济特区为重心的沿海地区优先发展阶段;②以缩小区域差距为导向的西部大开发阶段;③以浦东开发为龙头的沿江沿边地区重点发展阶段;④以区域协调发展为导向的共同发展阶段。这四个阶段按时间顺序排列应为()。
求微分方程y〞+y′-2y=χeχ+sin2χ的通解.
设f(χ)=,且g(χ的一个)原函数为ln(χ+1),求∫01f(χ)dχ.
设f(χ)为单调函数,且g(χ)为其反函数,又设f(1=2),f′(1)=-,f〞(1)=1则g〞(2)=________.
随机试题
下列关于Word2000的叙述中,错误的是_______。
IftheUnitedStateshadbuiltmorehomesforpoorpeoplein1955,thehousingproblemsnowinsomepartsofthecountry______s
传染病消毒的种类有()
男性,35岁,有胃溃疡病史,今日早饭后,突然上腹痛,拒按。查体:腹壁呈板状僵硬,可能为
根据《中华人民共和国药品管理法》,开办药品经营企业必须具备的条件包括
产妇进入第二产程后,每次听胎心的间隔时间约在
风险按其来源分为()。
根据下面的表格资料回答下列问题。
Comeon—Everybody’sdoingit.Thatwhisperedmessage,halfinvitationandhalfforcing,iswhatmostofusthinkofwhenwehe
A、Theyareactiveduringtheday.B、TheyareactiveatnightC、Theyaresensitivetolight.D、Theycanbeeasilyseparated.B讲座提
最新回复
(
0
)