首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T. B=(α1,α2,α3),求Bx=b的通解;
admin
2019-08-27
122
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
.
B=(α
1
,α
2
,α
3
),求Bx=b的通解;
选项
答案
先求Bx=0的基础解系,为此,首先要找出矩阵B的秩. 由题目的已知信息可得:Ax=0的基础解系中含有两个向量,故4一R(A)=2,也即R(A)=2,而由(1,0,2,1)
T
是Ax=0的解可得α
1
+2α
3
+α
4
=0,故α
4
=-α
1
一2α
3
. 可知α
4
能由α
1
,α
2
,α
3
线性表示,故R(α
1
,α
2
,α
3
,α
4
)=R(α
1
,α
2
,α
3
)=R(B),也即R(B)=2. 因此,Bx=0的基础解系中仅含一个向量,求出Bx=0的任一非零解即为其基础解系. 由于(1,0,2,1)
T
,(2,1,1,-1)
T
均为Ax=0的解,故它们的和(3,1,3,0)
T
也为Ax=0的解,可知3α
1
+α
2
+3α
3
=0,因此(3,1,3)
T
为Bx=0的解,也即(3,1,3)
T
为Bx=0的基础解系. 最后,再求Bx=b的任何一个特解即可.只需使得Ax=b的通解中α
1
的系数为0即可. 为此,令(1,1,1,1)
T
+k
1
(1,0,2,1)
T
+k
2
(2,1,1,-1)
T
中k
1
=0,k
2
=1,得(3,2,2,0)
T
是Ax=b的一个解,故(3,2,2)
T
是Bx=b的一个解. 可知Bx=b的通解为(3,2,2)
T
+k(3,1,3)
T
,k∈R.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://www.kaotiyun.com/show/52A4777K
0
考研数学二
相关试题推荐
设函数y(x)在区间[1,﹢∞)上具有一阶连续导数,且满足.求y(x).
计算,其中D由x=-2,y=2,x轴及曲线围成.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设幂级数的系数满足a0=2,nan=an-1+n—1,n=1,2,…,求此幂级数的和函数S(x),其中x∈(一1,1).
设平面图形D由χ2+y2≤2χ与y≥χ围成,求图形D绕直线χ=2旋转一周所成的旋转体的体积.
设二二次型f(x1,x2,x3)=3x12+3x22+5x32+4x1x3—4x2x3。求正交矩阵P,作变换x=Py将二次型化为标准形。
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
设f(χ)=,求f(χ)的间断点并判断其类型.
(2004年试题,一)设则f(x)的间断点为x=_________.
设A是n阶矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
随机试题
《胡同史话》一书由王某编纂,李某提供史料和咨询意见,于某进行书稿录人,张某协助联系出版事宜。《胡同史话》一书的著作权属于()。
新闻发布会是一种()
右下6死髓牙,经根管治疗后以金属烤瓷冠修复,在牙体预备取模后和金属烤瓷冠初戴之前,尚需
张XX,女,32岁。耳鸣间断发作3年余。听力明显下降。胸中烦闷,失眠多梦,痰多,大便不畅,舌红苔黄厚腻,脉滑数有力,方剂当选用
薄层色谱系统适用性试验的内容有
有些有毒中药青光眼患者不宜使用,以下属于青光眼患者不能使用的中药有()。
根据《税收征收管理法》的规定,下列情形中税务机关有权核定其应纳税额的有()。
学校这个子系统包括哪些基本要素?()
幼儿期的语言学习主要是()
下面对商鞅变法的分析,哪一项是不正确的?()
最新回复
(
0
)