首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
admin
2021-11-25
31
问题
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
选项
答案
因为A是正交矩阵,所以A
T
A=E,两边取行列式|A|
2
=1,因为|A|<0,所以|A|=-1 由|E+A|=|A
T
A+A|=|(A
T
+E)A|=|A||A
T
+E|=-|A
T
+E| =-|(A+E)
T
|=-|E+A| 得|E+A|=0
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4py4777K
0
考研数学二
相关试题推荐
[*]
[*]
(Ⅰ)求积分f(t)=(—∞<t<+∞).(Ⅱ)证明f(t)在(—∞,+∞)连续,在t=0不可导.
设A,B为n阶矩阵,下列命题成立的是().
下列微分方程中,以y=c1ex+c2e﹣xcos2x+c3e﹣xsin2x(c1,c2,c3为任意常数)为通解的是()
设A是n阶矩阵,下列结论正确的是().
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;(A一B恒可逆。上述命题中,正确的个数为()
下列命题正确的是().
设函数f(χ)二阶可导,且f′(χ)>0,f〞(χ)>0,△y=f(χ+△χ)-f(χ),其中△χ<0,则().
已知a,b,c不全为零,证明方程组只有零解.
随机试题
黑茶都可以用100℃的沸水来冲泡
关于风湿性二尖瓣狭窄和关闭不全的并发症,正确的是
产妇,26岁,孕期常规检查无异常,第二产程破膜后突然呛咳,烦躁,呼吸困难,随即昏迷,血压6.7/4kPa(50/30mmHg),休克。该产妇可能发生
慢性肾炎患者给予低蛋白低磷饮食治疗的目的是
管网式气体灭火系统有()启动方式。
在语文课上,当胡老师讲到课文中“一千万万颗恒星”一处时,刘明同学问道:“老师,‘万万’是什么意思?”全班同学觉得这个问题太简单,哄堂大笑。刘明也不好意思地低下了头,懊悔自己不该问这么简单的问题。胡老师见状,问大家:“大家都知道万万等于亿,那么,这里为什么不
在布卢姆的教育目标分类系统中,认知领域的目标分为六大类,其中最高水平的认知学习结果是()。
某教师对学生说:“我让你们干什么,你们就得干什么。”这种教师属于()。
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
Mostpeoplewouldbe(1)_____bythehighqualityofmedicine(2)_____tomostAmericans.Thereisalotofspecialization,agr
最新回复
(
0
)