首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,。证明存在,使得f'(η1)+f'(η1)=η31+η32。
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,。证明存在,使得f'(η1)+f'(η1)=η31+η32。
admin
2019-01-25
53
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,
。证明存在
,使得f'(η
1
)+f'(η
1
)=η
3
1
+η
3
2
。
选项
答案
构造辅助函数,[*],则F(0)=F(1)=0,F(x)满足拉格朗日中值定理。 [*] 即f'(η
1
)+f'(η
2
)=η
3
1
+η
3
2
成立。
解析
本题考查拉格朗日中值定理。本题有两个中值点,因此需要构造辅助函数,并两次应用拉格朗日中值定理。
转载请注明原文地址:https://www.kaotiyun.com/show/4hP4777K
0
考研数学三
相关试题推荐
求解微分方程(x+1)+1=2e—y.
设A,B为同阶方阵,(1)如果A,B相似,试证:A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证:(1)的逆命题成立.
设非齐次方程组(I)有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
已知矩阵A=有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,A*是矩阵A的伴随矩阵,求可逆矩阵P,使P—1A*P为对角矩阵.
已知问a,b为何值时,β不是α1,α2,α3,α4的线性组合?a,b为何值时,β有α1,α2,α3,α4的唯一线性表示式?并写出该表示式.
设积分区域D:x2+y2≤R2,其中y≥0,则().其中D1是积分区域D在x≥0的部分区域.
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在点ξ,η∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)
已知级数条件收敛,则常数p的取值范围是
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
随机试题
甲公司为一家制衣公司,2021年计划销售增长率为25%,该增长率超出公司正常的增长水平较多,为了预测融资需求,安排超常增长所需资金,财务经理请你协助安排有关的财务分析工作,该项分析需要依据管理用财务报表进行,相关资料如下:资料一:30
某二叉树共有7个结点,其中叶子结点只有1个,则该二叉树的深度为(假设根结点在第1层)()。
某钢筋混凝土结构的截面最小尺寸为300mm,钢筋直径为30mm,钢筋的中心间距为70mm,则该混凝土中集料最大公称粒径是()。
下列哪一项货物或物品不适用暂时进出境通关制度()。
下列关于个人教育贷款的说法,不正确的是()
在竞争环境下,如果通信企业要通过运用交叉补贴手段排挤竞争对手、获得竞争优势,其前提条件必须是该通信企业()。[2006年真题]
杜某在路上行走时,未在人行道内行走,违反了交通规则,但因其双目失明,根据《治安管理处罚法》的规定,可以不予处罚。()
Unlesswespendmoneytospotandpreventasteroids(小行星)now,onemightcrashintoEarthanddestroylifeasweknowit,sayso
Doctorsalreadyknowthatpeoplewhosmokecandamagetheirhearing.ThelateststudyinthejournalTobaccoControl,【C1】______m
Oneinsix.Believeitornot,that’sthenumberofAmericanswhostrugglewithhunger.Tomaketomorrowalittlebetter,Feedi
最新回复
(
0
)