首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
admin
2018-06-27
114
问题
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:
r(A-aE)+r(A-bE)=n.
选项
答案
一方面,根据矩阵秩的性质⑦,由(A-aE)(A-bE)=0得到r(A-aE)+r(A-bE)≤n.另一方面,用矩阵的秩的性质③,有r(a-aE)+r(a-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n. 两个不等式结合,推出r(A-aE)+r(A-bE)=n.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4ek4777K
0
考研数学二
相关试题推荐
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程zex-yey=zez所确定,求du.
计算二重积分,其中D是由曲线和直线y=-x围成的区域.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,X1,X2是分别属于λ1和λ2的特征向量,试证明X1+X2不是A的特征向量.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
求微分方程y"-2y’=e2x满足条件y(0)=1,y’(0)=1的解.
求微分方程y"+5y’+6y=2e-x的通解.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
随机试题
男,70岁,上唇一个毛囊尖处出现红肿、疼痛的结节,中央部有灰黄色小脓栓形成,错误的处置是
下面关于居民委员会工作的陈述,不正确的是()。
稳定性好、不易脱位的关节是
A.1~12个月,平均3个月B.3周左右C.10周左右D.2年以上E.1~14天,多为2~5天
A.肾上腺素B.阿托品C.异丙肾上腺素D.多巴胺E.去甲肾上腺素能解除迷走神经活性且对血压影响不大的药物是
下列不属于项目实施阶段组织策划主要工作的是()。
一只基金在收益分配前的份额净值是1.3400元,假设每份基金分配0.0500元收益,不考虑其他因素,在进行分配后基金的份额净值()。
权证创设人创设或注销权证的,证券登记结算公司应根据有效的创设或注销申报,办理权证创设或将相应权证予以注销。()
尽量满足旅游者需要是导游服务的基本原则,应贯穿于导游服务的始终。()
陶器的产生是和农业经济的发展联系在一起的,一般是先有了农业,然后才出现陶器。这些创造发明,无疑应归功于妇女,因为在性别分工的基础上妇女是家里的主人,必然首先从事这些活动。这在我国某些少数民族地区还保留着一定的残余,例如云南傣族和台湾高山族的制陶都由妇女来承
最新回复
(
0
)