首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2,y3,都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是( )
设线性无关的函数y1,y2,y3,都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是( )
admin
2020-03-02
37
问题
设线性无关的函数y
1
,y
2
,y
3
,都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C
1
,C
2
是任意常数,则该非齐次方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
.
B、C
1
y
1
+C
2
y
2
一(C
1
+C
2
)y
3
.
C、C
1
y
1
+C
2
y
2
一(1一C
1
—C
2
)y
3
.
D、C
1
y
1
+C
2
y
2
+(1一C
1
—C
2
)y
3
.
答案
D
解析
因为y
1
,y
2
,y
3
是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)线性无关的解,所以(y
1
一y
3
),(y
2
一y
3
)都是齐次线性方程y"+p(x)y’+q(x)y=0的解,且(y
1
一y
3
)与(y
2
一y
3
)线性无关,因此该齐次线性方程的通解为y=C
1
(y
1
一y
3
)+C
2
(y
2
一y
3
).比较四个备选项,且由线性微分方程解的结构性质可知,故选D.
转载请注明原文地址:https://www.kaotiyun.com/show/4RS4777K
0
考研数学一
相关试题推荐
设m,n均是正整数,则反常积分的敛散性()
下列命题正确的是().
袋中有8个球,其中3个白球、5个黑球,现随意从中取出4个球,如果4个球中有2个白球、2个黑球,试验停止.否则将4个球放回袋中,重新抽取4个球,直到出现2个白球、2个黑球为止,用X表示抽取次数,则P(X=k)=________(后=1,2,…).
设Ω由x2+y2+z2≤R2,z≥0所确定,则(x2+2y2+3z2)dv=_______。
已知非齐次线性方程组A3×4=b①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______.
ex展开成x-3的幂级数为_________
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设有齐次线性方程组AX=O和BX=O,其中A,B均为m×n矩阵,现有4个命题:(1)若AX=O的解都是BX=O的解,则r(A)≥r(B);(2)若r(A)≥r(B),则AX=O的解都是BX=O的解;(3)若AX=O与BX=O同
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…Xn取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).(I)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使均为θ的无偏估计,并比较其有效性;(Ⅲ)应用切比雪夫不等式证明:均
随机试题
毛泽东概括新民主主义革命总路线的会议是()
2008年3月16日早晨,淇县庙口乡许某与其子常某去寻找自己家的狗。母子二人来到与之一墙之隔的邻居海某家,常某从羊圈上下到邻居家院内。这时海某在屋内听见院内有动静,就出来察看。见状即与常某母子发生争执,双方发生吵骂和厮打。事后,许某和其子常某经法医鉴定为轻
进口涂料的生产商、进口商和进口代理商根据需要,可以向备案机构申请进口涂料备案,备案申请应在涂料进口之前至少2个月向备案机构提出申请。
证券公司、推广机构应当保证集合资产管理合同的总金额不得低于《证券公司证券资产管理业务试行办法》规定的最低金额。( )
TheZhusuan,otherwiseknownastheChineseabacuswasofficiallylistedasanintangibleculturalheritageatthe8thAnnualUN
(2016年真题)我国宪法规定,国家尊重和保障人权。下列关于该条款的表述,正确的有()。
生产力是社会发展的最终决定力量,表现为()
抗日战争期间,为了抗日民族统一战线的坚持、扩大和巩固,中国共产党制定了“发展进步势力,争取中间势力,孤立顽固势力”的策略总方针,其中中间势力主要包括()
Therelianceoncreditreportsinhiringisbecomingwidespread.AsurveybytheSocietyforHumanResourceManagementfoundt
______the1500’s______thefirstEuropeansexploredthecoastofCalifornia.
最新回复
(
0
)