首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=3x12+4x22+3x32+2x1x3. (I)求正交变换x=Qy将二次型f(x1,x2,x3)化为标准型; (Ⅱ)证明:
已知二次型f(x1,x2,x3)=3x12+4x22+3x32+2x1x3. (I)求正交变换x=Qy将二次型f(x1,x2,x3)化为标准型; (Ⅱ)证明:
admin
2022-09-22
62
问题
已知二次型f(x
1
,x
2
,x
3
)=3x
1
2
+4x
2
2
+3x
3
2
+2x
1
x
3
.
(I)求正交变换x=Qy将二次型f(x
1
,x
2
,x
3
)化为标准型;
(Ⅱ)证明:
选项
答案
(I)二次型f(x
1
,x
2
,x
3
)=3x
1
2
+4x
2
2
+3x
3
2
+2x
1
x
3
对应的矩阵为A=[*] 因为|A-λE|=[*]=-(λ-2)(λ-4)
2
=0, 所以A的特征值为λ
1
=2,λ
2
=λ
3
=4. 当λ
1
=2时,解(A-2E)x=0. 由A-2E=[*]得对应于λ
1
=2的特征向量为α
1
=[*] 当λ
2
=λ
3
=4时,解(A-4E)x=0. 由A-4E=[*]得对应于λ
2
=λ
3
=4的特征向量为α
2
=[*]α
3
=[*] α
1
,α
2
,α
3
已互相正交,故只需将其单位化得 [*] 令Q=(γ
1
,γ
2
,γ
3
)=[*]经正交变换x=Qy,将二次型f(x
1
,x
2
,x
3
)化为标准型f(y
1
,y
2
,y
3
)=2y
1
2
+4y
2
2
+4y
3
2
. (Ⅱ)由(I)得f(x
1
,x
2
,x
3
)[*]f(y
1
,y
2
,y
3
)=2y
1
2
+4y
2
2
+4y
3
2
, 而2(y
1
2
+y
2
2
+y
3
2
)≤2y
1
2
+4y
2
2
+4y
3
2
≤4(y
1
2
+y
2
2
+y
3
2
), 故2≤[*]≤4(y
1
,y
2
,y
3
≠0). 因此,[*]=2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/4Pf4777K
0
考研数学二
相关试题推荐
设矩阵,B=A2-3A+2E,则B-1=_______.
xx(1+lnx)的全体原函数为___________.
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
已知方程组的通解是(1,2,-1,0)T+k(-1,2,-1,1)T,则a=________.
设k为常数,则=_______.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
求二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩,正负性指数p,q.
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(χ1,χ2,χ3)为标准型.
求微分方程(y+)dx-xdy=0的满足初始条件y(1)=0的解.
下列命题:①设f’(x)与f“(x)均存在,则f(x)在x=x0处必连续;②设f’-(x0)与f’﹢(x0)均存在,则f(x)在x=x0处必连续;③设f(-0)与f(﹢0)均存在,则f(x)在x=x0处必连续;④设f’(x)与f’中至少有一个不存在
随机试题
按照提供的教材片段,设计1课时的教学简案(也可以是单元中的一课)。要求:(1)写出一篇规范、完整的课时教学简案。(2)恰当设定本课的教学目标、教学重点和难点。(3)合理地设计学习活动和作业要求。(4)设计至少三个课堂提问。
某高土石坝坝体施工项目,业主与施工总承包单位签订了施工总承包合同,并委托了工程监理单位实施监理。施工总承包完成桩基工程后,将深基坑支护工程的设计委托给了专业设计单位,并自行决定将基坑的支护和土方开挖工程分包给了一家专业分包单位施工,专业设计单位根据业主提
一座容纳人数为2400人的剧场,需要设置的疏散门数量为()个。
保税区内生产性的基础设施建设项目所需的机器设备可以享受免税进口。()
根据《期货公司执行股指期货投资者适当性制度管理规则(试行)》,期货公司会员单位在审慎评估投资者诚信状况和风险承受能力的情况下,可适当帮助投资者规避适当性标准要求。()
合伙人对合伙企业有关事项作出决议,应当按照合伙协议约定的表决办法办理。如果合伙协议未约定或者约定不明确的,下列各项中,其表决办法符合《合伙企业法》规定的是()。
版面强势(暨南大学,2017)
在俄国社会主义革命取得胜利的初期,特别是实行新经济政策期间,列宁对苏维埃俄国如何建设社会主义进行过深刻的理论思考,提出许多精辟的论述,具体有()
Thelong,wetsummerhereinthenortheasternUSnotwithstanding,there’saworldshortageofpure,freshwater.Asdemandforw
A、Hisgeneralhealthwillbenefitgreatly.B、Hewillbegintobreathemoreregularly.C、Hisflexibilitywilldecrease.D、Hewill
最新回复
(
0
)