首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为 【 】
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为 【 】
admin
2017-06-26
98
问题
设n维列向量组α
1
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,…,β
m
线性无关的充分必要条件为 【 】
选项
A、向量组α
1
,…,α
m
可由向量组β
1
,…,β
m
线性表示.
B、向量组β
1
,…,β
m
可由向量组α
1
…,α
m
线性表示.
C、向量组α
1
,…,α
m
与向量组β
1
,…,β
m
等价.
D、矩阵A=[α
1
…α
m
]与矩阵B=[β
1
…β
m
]等价.
答案
D
解析
当A=[α
1
… α
m
]与B=[β
1
… β
m
]等价时,A与B有相同的秩,由已知条件知A的秩为m,故B的秩亦为m,即β
1
,…,β
m
线性无关;若β
1
,…,β
m
线性无关,则矩阵A与B有相同的秩m,A与B又都是n×m矩阵,故A与B有相同的秩标准形(矩阵)P,于是A与P等价,B也与P等价,由等价的性质即知A与B等价.综上可知D正确.
转载请注明原文地址:https://www.kaotiyun.com/show/4NH4777K
0
考研数学三
相关试题推荐
设f(u,v)是二元可微函数=_________.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是Y=y(x)的反函数.试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;
设f(x)为恒大于零的可微函数,当时,恒自f’(x)sjnx
幂级数的收敛半径为_________.
假设随机变量X和Y同分布,X的概率密度为f(x)=(Ⅰ)已知事件A={X>a}和B={Y>a}独立,且P(A∪B)=3/4,求常数a;(Ⅱ)求1/X2的数学期望.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设随机变量X1,X2,…,Xn,…相互独立,,则当n→∞时Yn以正态分布为极限分布,只要X1,…,Xn,…
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(=0.9772).
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
随机试题
睾酮适用于
简述新民主主义革命的基本纲领。
下列选项中,关于肝硬化患者出现蜘蛛痣的主要机制,说法正确的是
中标通知书发出后,其法律效力约束的对象有()
监理工程师不得采取()形式对建设工程实施监理。
热拌沥青混凝土路面施工_工艺包括()。
若每人每小时处理进出货量低,但进出货开寸问率高,表示虽仓库一日内的进出货时间长,但每位人员进出货负担却很轻。原因出在仓库目前的业务量过大。可考虑增加进出货人员,以减轻每人的工作负担。()
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
A、TherevolutionofUSmedicinehasbeencompleted.B、Thespeedofthechangeisreallyquick.C、ThereisaslowevolutioninUS
____________(他们正要离开)whenthephonerang.
最新回复
(
0
)