首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
admin
2020-07-31
59
问题
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
选项
答案
先证根的存在性.由题设知,f(x)在[a,a-f(a)/k]上满足拉格朗日中值定理条件,故有 [*] 又因为f(a)>0,由零点定理知,方程f(x)=0在(a,a-f(a)/k)内有实根. 再由fˊ(x)<0(x>a)且f(x)在x≥a处连续知,f(x)在[a,a-f(a)/k]上单调减少,故方程f(x)=0在[a,a-f(a)/k]上最多有一个根. 综上所述,命题得证.
解析
先利用拉格朗日中值定理及零点定理证明根的存在性,再利用函数的单调性证明方程根的唯一性.
转载请注明原文地址:https://www.kaotiyun.com/show/4G84777K
0
考研数学二
相关试题推荐
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A为四阶非零矩阵,且r(A*)=1,则().
设y1(x)和y2(x)是微分方程y”+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为().
设n维行向量α=,矩阵A=E一αTα,B=E+2αTα,则AB=()
若=()
设f(x,y)二阶连续可偏导,f’x(x,1)=2x+1-sinx,f"xy(x,y)=2x+2y,且f(0,y)=2y+3,则f(x,y)=___。
二元函数f(x,y)在点(x0,y0)处的下面4条性质:(Ⅰ)连续;(Ⅱ)两个偏导数连续;(Ⅲ)可微;(Ⅳ)两个偏导数存在,则().
[2013年]设函数f(x)=lnx+设数列{xn}满足lnxn+<l,证明xn存在,并求此极限.
[2012年]已知函数f(x)=,记a=f(x).若x→0时,f(x)一a与xk是同阶无穷小,求常数k的值.
设矩阵Am×n的秩,r(A)=r(A|b)=m<n,则下列说法错误的是()
随机试题
急性白血病常见的临床表现是
A.中毒性心肌炎B.胰头癌C.尿路结石D.幽门梗阻E.绞窄性肠梗阻腹痛伴血便的是
A、polB、gagC、envD、nefE、LTR编码HIV包膜蛋白
我国建设项目环境影响登记表的填写单位一般是()。
下列属于财务计算器中货币时间价值功能键的有()。
可比实例成交价格×()=可比实例正常市场价格。
简述布鲁姆教育目标分类学。
我国《合同法》第42条规定:“当事人在订立合同过程中有下列情形之一,给对方造成损失的,应当承担损害赔偿责任:(一)假借订立合同,恶意进行磋商;(二)故意隐瞒与订立合同有关的重要事实或者提供虚假情况;(三)有其他违背诚实信用原则的行为。”试分析:
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y一x2一2zy一4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
[*]利用+C求之较简.
最新回复
(
0
)