首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTA X=ax12+2x22-2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12. (1)求a、b的值; (2)利用正交变换将二次型f化为标准形.并写出所用的正交变换和对应的正交矩阵
设二次型f(x1,x2,x3)=XTA X=ax12+2x22-2x32+2bx1x3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12. (1)求a、b的值; (2)利用正交变换将二次型f化为标准形.并写出所用的正交变换和对应的正交矩阵
admin
2018-08-02
84
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
A
X=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.
(1)求a、b的值;
(2)利用正交变换将二次型f化为标准形.并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)f的矩阵为A=[*],由λ
1
+λ
2
+λ
3
=a+2+(-2)=1,及λ
1
λ
2
λ
3
=|A|=2(-2a-b
2
)=-12,解得a=1,b=2. (2)正交矩阵P=[*],可使P
T
AP=[*],故在正交变换[*]下,f的标准形为f=2y
1
2
+2y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/42j4777K
0
考研数学二
相关试题推荐
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积,若V1=V2,求A的值.
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设A是,n阶矩阵,下列结论正确的是().
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设A是m×n矩阵,且m>n,下列命题正确的是().
随机试题
阅读《风波》中的片段,回答下列小题:临河的土场上,太阳渐渐地收了他通黄的光线了。场边靠河的乌桕树叶,干巴巴的才喘过气来,几个花脚蚊子在下面哼着飞舞。面河的农家的烟突里,逐渐减少了炊烟,女人孩子们都在自己门口的土场上泼些水,放下小桌子和矮凳;人知道,这已经
A.儿童B.老年患者C.妊娠期妇女D.哺乳期妇女E.更年期后的女性应用糖皮质激素易发生高血压的人群是()。
寒热往来,发无定时,可见于()。
根据《建设工程项目管理规范》,制定项目管理目标责任书的主要依据有()。
下列关于劳动仲裁的表述中,正确的有()。
大陆对台大政方针是坚持反对“台独”,坚持维护一个中国的原则,继续坚持()。
简述技能的概念、特点、类型以及作用。
甲、乙两人相约于某地在12:00~13:00会面,设X,Y分别是甲、乙到达的时间,且假设X和Y相互独立,已知X,Y的概率密度分别为求先到达者需要等待的时间的数学期望.
UML中的结构事物是模型中的静态部分,采用名词描述概念或物理元素。(46)________________属于结构事物,以此事物为主的UML模型图为(47)________________。
WhatdoestheManMean?
最新回复
(
0
)