首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A2X线性无关,且满足A3X=3AX一2A2X. 计算行列式|A+E|.
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A2X线性无关,且满足A3X=3AX一2A2X. 计算行列式|A+E|.
admin
2019-07-23
44
问题
[2001年] 已知三阶矩阵A与三维向量X,使得向量组X,AX,A
2
X线性无关,且满足A
3
X=3AX一2A
2
X.
计算行列式|A+E|.
选项
答案
由上题知P
-1
AP=B,即A~B,因而A+E~B+E.得到 |A+E|=|B+E|=[*]=一4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3wc4777K
0
考研数学一
相关试题推荐
已知向量ξ1和ξ2是方程(λE-A)x=0的两个不同解,则下列向量中必是矩阵A的属于λ的特征向量的是()
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
设函数x=x(y)由方程x(y-x)2=y所确定,试求不定积分
设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()
微分方程xdy+2ydx=0满足初始条件y|x=2=1的特解为()
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
求不定积分
设S为平面x一2y+z=1位于第四卦限的部分,则ds=___________.
随机试题
16岁少女,活动时突发左下腹剧痛1小时,恶心、呕吐2次,体温37.2℃,肛查子宫左侧触及约7cm×6cm×5cm肿物,能活动,触痛明显。最可能的诊断是
成年人中最多见的急性白血病是
下列选项中,属于机动车维修技术负责人应满足的基本条件的是()。
试分别叙述标准贯入试验、十字板剪切试验的实施,静力触探试验适应的土性,及它们在港口与航道工程施工中的作用。
下列哪一项属于以被保险人因遭受意外伤害造成死亡、残废为给付保险金条件的人身保险?( )
《基础教育课程改革纲要(试行)》指出:教师在教学过程中应与学生()
[*]
在INPUT、ACCEPT和WAIT三个命令中,必须要以回车键表示输入结束的命令是
下列叙述中正确的是
随着社会的发展,科学技术的进步,人民生活水平的提高,食品工业在当今社会中起着越来越大的作用,食品的结构也在发生很大的变化,消费者已意识到索取过多的热量和人工合成添加剂,会给人们带来许多弊病,所以很多的食品生产部门都在适应时代的潮流,向饮食低热量、高营养、新
最新回复
(
0
)