首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(3,6,一3)T,
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(3,6,一3)T,
admin
2018-03-30
102
问题
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k
1
(1,2,一2)
T
+k
2
(2,1,2)
T
,其中k
1
,k
2
是任意常数,α=(1,1,1)
T
.
(Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关;
(Ⅱ)若β=(3,6,一3)
T
,求Aβ.
选项
答案
(Ⅰ)由题设条件,A的每行元素之和为3,则 [*] 即A有特征值λ
1
=3,对应的特征向量为ξ
1
=(1,1,1)
T
. Ax=0有通解k
1
(1,2,一2)
T
+k
2
(2,1,2)
T
,知A有特征值λ
2
=λ
3
=0,对应的特征向量为 ξ
2
=(1,2,一2)
T
,ξ
3
=(2,1,2)
T
. 因ξ
1
,ξ
2
,ξ
3
线性无关,故任意3维向量β均可由ξ
1
,ξ
2
,ξ
3
线性表出,设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, 从而有 Aβ=A(x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
)=x
1
Aξ
1
=3x
1
[*]=3x
1
α, 得证Aβ和α线性相关. (Ⅱ)[解]当β=(3,6,一3)
T
时,令β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
,解非齐次线性方程组 [*] 对(*)式的增广矩阵作初等行变换,得 [*] 解得 (x
1
,x
2
,x
3
)
T
=(3,2,一1)
T
. 即 β=3ξ
1
+2ξ
2
—ξ
3
, Aβ=A(3ξ
1
+2ξ
2
—ξ
3
)=3ξ
1
=3×3×[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3wX4777K
0
考研数学三
相关试题推荐
曲线渐近线的条数为
设aibi≠0(i=1,2,…,n),则矩阵的秩为_______.
设A,B,C均为竹阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B一C为【】
设有微分方程y’一2y=φ(x).其中,试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0
设随机变量X1,X1,…,Xm+n(m<n)独立同分布,其方差为σ2,令Y=,Z=.求:(Ⅰ)D(Y),D(Z);(Ⅱ)ρYZ.
将函数f(x)=展开成(x一2)的幂级数,并求出其收敛区间.
函数f(x)=的间断点的个数为__________.
设Xn表示将一枚匀称的硬币随意投掷n次其“正面”出现的次数,则
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
随机试题
为防止焊割作业发生火灾事故,必须采取什么措施?
哪些体温变化属于生理变动?
非处方药的特点
明渠在坡度、糙率和过水断面积给定条件下,其水力最佳断面的含义为( )。
工程咨询公司所面临的经济风险有()。
某工程双代号时标网络计划执行到第6周末和第10周末时,检查其实际进度如下图前锋线所示。由图中可以看出()。
企业在销售商品的同时授予客户奖励积分的,应当将取得的货款在商品销售产生的收入与奖励积分之间进行分配,与奖励积分相关的部分确认为资本公积。()
游客发生食物中毒,出现上吐下泻症状。此时导游人员首先应该()。
教师要注重有效地发挥现代信息技术的作用,()有助于学生理解知识,但无法全面体现化学实验的功能,不能替代化学实验。
下列生活现象与大气压强无关的是()。
最新回复
(
0
)