首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
admin
2017-05-31
94
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)sinxdx=0,∫
0
π
f(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
选项
答案
反证法.如果.f(x)在(0,π)内无零点(或有一个零点,但f(x)不变号,证法相同),即f(x)>0(或<0),由于在(0,π)内,亦有sinx>0,因此,必有∫
0
π
f(x)sinxdx>0(或<0).这与假设相矛盾. 如果f(x)在(0,π)内有一个零点,而且改变一次符号,设其零点为a∈(0,π),于是在(0,a)与(a,π)内f(x)sin(x-a)同号,因此∫
0
π
f(x)sin(x-a)dx≠0.但是,另一方面 ∫
0
π
f(x)sin(x-a)dx=∫
0
π
f(x)(sinxcosa-cosxsina)dx =cosa∫
0
π
f(x)sinxdx-sina∫
0
π
f(x)cosxdx=0. 矛盾说明f(x)也不能在(0,π)内只有一个零点,因此它至少有两个零点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3gt4777K
0
考研数学二
相关试题推荐
设f(x,y)可微,且f’1(-1,3)=-2,f’2(-1,3)=1,令z=f(2x-y,y/x),则dz|(1,3)=用.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=________.
设z=z(x,y)由z+ez=xy2确定,则dz=________.
考察下列函数的极限是否存在.
当x→0时,试将下列无穷小量与无穷小量x进行比较:
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。求容器的容积;
一质量为M、长为Z的均匀杆AB吸引着一质量为m的质点C,此质点C位于杆AB的中垂线上,且与AB的距离为a.试求:当质点C在杆AB的中垂线上从点C沿y轴移向无穷远处时,克服引力所做的功.
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
随机试题
天南星的功效是
铅的原子量为207,测得接触者血液中铅的浓度为400μg/L,若用btmol/L表示,应为
进行肠肝循环的是
尿毒症患者发生纤维性骨炎的主要原因是
某公司2010年末的流动资产合计为800万元,其中包括存货360万元;流动负债合计为200万元。则该公司2010年末的速动比率为()。
在中国共产党领导下,中国人民真正掌握了自己的命运。从根本上看,这体现在()。
华盛顿会议上,对中国影响最大的是()。
下列关于职业道德的说法中,正确的是()。
人工智能是指由人工制造出来的系统所表现出来的智能。人工智能的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。下列论述中所描述的各项技术突破,无关人工智能的是()。
A、HewasamanfullofresponsibilityforGermancitizens.B、Hewasamanwithlittlecouragetofacethethreatofwar.C、Hewa
最新回复
(
0
)