首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
admin
2016-10-20
61
问题
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是A
T
的特征向量.
选项
答案
按特征值定义,对于Aα=λα,经转置得 α
T
A
T
=(Aα)
T
=(Aα)
T
=λα
T
, 因为A
T
A=E,从而 α
T
α=α
T
A
T
Aα=(λα
T
)(λα)=λ
2
α
T
α, 则 (1-λ
2
)α
T
α=0. 因为α是实特征向量,α
T
α=x
1
2
+x
2
2
+…+x
n
2
>0,可知λ
2
=1,由于λ是实数,故只能是1或-1. 若λ=1,从Aα=α,两边左乘A
T
,得到A
T
α=A
T
Aα=α,即α是A
T
关于λ=1的特征向量.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/3YT4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
已知三角形三个顶点坐标是A(2,-1,3),B(1,2,3),C(0,1,4),求△ABC的面积.
已知级数,则:(1)写出级数的第五项和第九项u5,u9;(2)计算出部分和S3,S10;(3)写出前几项部分和Sn的表达式;(4)用级数收敛的定义验证该级数收敛,并求和.
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
随机试题
毛泽东曾对新民主主义革命总路线做了完整概括,这里所说的“完整’’是指在革命的对象中增加了()
门静脉高压症最凶险的并发症是
感冒通片临床不良反应可见
根据《污水综合排放标准》,以下允许在排污单位排放口采样的污染物是()。
工程监理单位是建筑市场的主体之一,建设工程监理是一种高智能的()。
会计职业道德警示教育是指通过对违反会计职业道德行为和违法会计行为典型案例进行讨论和剖析,从中得到警示,提高法律意识、会计职业道德观念和辨别是非能力的一种教育。()
下列选项中关于战略联盟中股权式联盟和契约式联盟中,说法正确的有()。
申请领取导游证,需()。
高度相同的一段方木和圆木,体积比为1:1,若将方木加工成尽可能大的圆木,圆木加工成尽可能大的方木,得到的圆木和方木的体积比为?
流感通常由受感染的个人传染给在他附近工作的人,因此抑制流感症状的药实际上增加流感的受感染人数,因为这种抑制流感的药使本应在家中卧床休息的人,在受感染时返回到工作场所。如果以上论述正确,下列哪项最有力地反驳了这一推断?
最新回复
(
0
)