首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知 P为3阶非零矩阵,且满足PQ=O,则
已知 P为3阶非零矩阵,且满足PQ=O,则
admin
2018-08-03
30
问题
已知
P为3阶非零矩阵,且满足PQ=O,则
选项
A、t=6时P的秩必为1.
B、t=6时P的秩必为2.
C、t≠6时P的秩必为1.
D、t≠6时P的秩必为2.
答案
C
解析
由PQ=O,知Q的每一列都是线性方程组PX=0的解.当t≠6时,Q的列秩为2,故PX=0至少有2个线性无关的解,所以其基础解系所含向量个数至少为2,即3一r(P)≥2,或r(P)≤1;又P≠O,有r(P)≥1,故当t≠6时必有r(P)=1.
转载请注明原文地址:https://www.kaotiyun.com/show/2ug4777K
0
考研数学一
相关试题推荐
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f"(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:.
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
a,b取何值时,方程组有解?
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
随机试题
标记合成的寡核苷酸时,dNTP的浓度
如上哪项是肝郁气滞型癃闭的临床表现如上哪项是中气下陷型癃闭的临床表现
21世纪“人人享有卫生保健”的总目标中不包括
诊断癌性胸腔积液最常用且特异性最强的方法是
临床上表现原发性闭经的有()
1997年12月,149个国家和地区通过的《京都议定书》规定了减排目标,温室气体排放量具有了价值,并成为一种商品,这种商品形成的市场称为()。
“只有认识错误,才能改正错误。”以下诸项都准确表达了上述断定的含义,除了()。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
Ropeskippinghasmanyadvantagesforsomeonelookingforaninexpensiveandconvenientformofexercise.It(51)toallthecompo
Couldthebadolddaysofeconomicdeclinebeabouttoreturn?SinceOPECagreedtosupply-cutsinMarch,thepriceofcrudeoil
最新回复
(
0
)