首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证: (1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (2)
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证: (1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (2)
admin
2016-01-11
85
问题
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:
(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
(2)
选项
答案
(1)对(一1,1)内任一x≠0,由拉格朗日中值定理知,[*](x)∈(0,1),使 f(x)=f(0)+xf’(θ(x)x). 因为f”(x)在(一1,1)内连续且f”(x)≠0,所以f”(x)在(一1,1)内不变号,即f’(x)单调,故θ(x)是唯一的. (2)再由泰勒公式知,存在介于0与x之间的ξ,使 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2l34777K
0
考研数学二
相关试题推荐
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
方程的通解为___________.
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
从点P1(1,0)作x轴的垂线,交抛物线y=x2于点Q1(1,1),再从Q1作这条抛物线的切线与x轴交于P2,然后又从P2作x轴的垂线,交抛物线于点Q2…,依次重复上述过程得到一系列的点P1,Q1,P2,Q2,…,Pn,Qn,….
设f(x)为微分方程yˊ-xy=g(x)满足y(0)=1的解,其中g(x)=,则有()
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设f(t)在(-∞,+∞)内有连续导数,且满足f(t)=2(x2+y2)f()dxdy+t1,其中D:x2+y2≤t2,求f(t)及f(4n)(0)(n≥1).
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
随机试题
()用于敷设在电缆沟、直埋地等能承受较大机械外力的场所。
整体设置九年一贯的学科门类和课时比例,并设置综合课程,这方面改革指向的是()。
试述闭合性气胸的处理。
患者,男,28岁。运动后发生腰部绞痛,继而出现肉眼血尿,最可能的诊断是
特别行政区行政长官在何种情况下必须辞职?
某港口,原有航道全长10km、深8.5m、底宽90m,原有1号港池6个泊位,现拟在1号港池旁扩建2号港池,并加深原航道,利用航道开挖土回填2号港池码头后方堆场。问题:简述提高本工程施工效率的要点。
下列属于询价对象的是()。
由于抵押人的行为而使得抵押物价值减少,而抵押人又无法完全恢复的,银行应该要求抵押人提供与减少价值相当的担保。()
下列哪些教育家对分科课程做出了重大的贡献?()
Theauthortriestoconvinceusthat______.Accordingtothepassage,whatmuseseducationallyunderutilizing?
最新回复
(
0
)