首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求正交变换化二次型x12+x22+x32+4x1x2-4x2x3-4x1x3为标准形.
求正交变换化二次型x12+x22+x32+4x1x2-4x2x3-4x1x3为标准形.
admin
2018-06-27
79
问题
求正交变换化二次型x
1
2
+x
2
2
+x
3
2
+4x
1
x
2
-4x
2
x
3
-4x
1
x
3
为标准形.
选项
答案
二次型矩阵A=[*],由特征多项式 |λE-A|=[*]=(λ+3)(λ-3)
2
, 得特征值为λ
1
=λ
2
=3,λ
3
=-3. 由(3E-A)x=0得基础解系α
1
=(-1,1,0)T,α
2
=(-1,0,1)
T
,即λ=3的特征向量是α
1
,α
2
. 由(-3E-A)x=0得基础解系α
3
=(1,1,1)
T
. 对α
1
,α
2
经Schmidt正交化,有 β
1
=α
1
,β
2
=αα
2
-[*] 单位化,得 [*] 那么,令x=Qy,其中Q=(γ
1
,γ
2
,γ
3
),则有f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Ay=3y
1
2
+3y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/2ik4777K
0
考研数学二
相关试题推荐
若矩阵相似于对角阵A,试确定常数a的值;并求可逆矩阵P使P-1AP=A.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是
设函数f(f)在[0,+∞)上连续,且满足方程,求f(t).
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)0(x∈(0,1));
曲线在其交点处的切线的夹角θ=_________.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
微分方程xy’’一y’=x的通解是_______.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
近日,有科学家撰文指出,即使保持现有的城市和农田面积,地球上至少还有种植1万亿棵或1.5万亿棵树的空间,面积可达900万平方公里,大致相当于美国的国土面积。而这些新树未来几十年里可以从大气中吸收近7500亿吨导致温室效应的二氧化碳,这几乎等同于人类在过去2
代谢性酸中毒最突出的表现是
药品生产企业生产的药品必须
拆除非公益事业房屋的附属物,()。
某特大桥全长800m,桥宽20m,采用水泥混凝土桥面铺装,全桥共设22条伸缩缝,其中板式橡胶伸缩缝设置19条,梳形伸缩缝设置3条。大桥通车一年后桥面铺装出现开裂,部分板式橡胶伸缩缝的橡胶板剥离,预埋钢板外露、脱落、断裂;梳形伸缩缝焊口开焊,钢盖板变形、脱落
下列不属于组织中最常用的方法的是()。
行为科学双因素理论中,双因素指的是()。
简述莫扎特的歌剧创作风格。
我国人口分布的基本特点是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
最新回复
(
0
)