首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________
admin
2019-05-14
89
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y(x),y(x)与y(x)是二阶线性非齐次方程
y’’+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为________
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与
2
使k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
=常数,矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.于是 Y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://www.kaotiyun.com/show/2O04777K
0
考研数学一
相关试题推荐
设A是任一n阶矩阵,下列交换错误的是
设f(x)在[1,+∞)可导,d/dx[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中k,M为常数,求证:f(x)<(x>1).
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
选择a,b,使Pdx+Qdy在区域D={(x,y)|x2+y2≠0}内为某函数u(x,y)的全微分,其中
求下列极限:
求椭球面S:x2+y2+z2-yz-1=0上具有下列性质的点(x,y,z)的轨迹:过(x,y,z)的切平面与Oxy,平面垂直.
(1990年)求曲面积分其中S是球面x2+y2+z2=4外侧在z≥0的部分.
已知方程组有无穷多解,则a=__________.
设总体X的概率分布为其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数a1,a2,a3,使T=aiNi,为θ的无偏估计量,并求丁的方差.
设则
随机试题
Jointhe"SleepChallenge"[A]Didyougetenoughsleeplastnight?Probablynot."Weareanationofsleep-deprivedwomen,"
肝硬化最常见的死亡原因是
在招标采购项目转移的方法中,转移违规行为风险、保证招标人招标活动成功进行的有效方式是()。
TCP/IP是一种()。
默认位于工具栏的下方,用来显示当前单元格的名字和当前单元格的内容、取消或确认本次输入的数据或公式的区域是()。
我国当前进行的上市公司股权分置改革是通过内资股股东和外资股股东之间的利益平衡协商机制,消除A股市场和B股市场股份转让制度性差异的过程,是为外资股可上市交易作出的制度安排。( )
甲公司以100万元的价格向乙公司订购一台机床,根据合同约定,2016年4月1日,甲公司签发一张以乙公司为收款人、金额为100万元的银行承兑汇票,承兑人为A银行,到期日为2016年7月1日。2016年4月4日,乙公司将该银行承兑汇票丢失,被B拾得。4月5日
已知两个长度分别为l和s的降序链表,若将它们合并为一个长度为l+s的升序链表,则最坏情况下的时间复杂度是()。
下列程序的输出结果是【】。#include<iostream>usingnamespacestd;template<typenameT>Ttotal(T*data){Ts=0;while(*data){
Whatdoesthewomanmean?
最新回复
(
0
)