首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
admin
2019-03-12
126
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
(1)存在可逆矩阵P,使得P
T
AP,P
T
BP都是对角矩阵;
(2)当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
(1)因为A正定,所以存在实可逆矩阵P
1
,使得P
1
T
AP
1
=E.作B
1
=P
1
T
BP
1
,则B
1
仍是实对称矩阵,从而存在正交矩阵Q,使得Q
T
B
1
Q是对角矩阵.令P=P
1
Q,则 P
T
AP=Q
T
P
1
T
AP
1
Q=E,P
T
BP=Q
T
P
1
T
BP
1
Q=Q
T
B
t
Q.因此P即所求. (2)设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
3
,…,λ
n
,记 M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/20P4777K
0
考研数学三
相关试题推荐
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
极数的收敛域为
设A,B均为三阶矩阵,将A的第一行加到第二行得到A1,将B的第二列和第三列交换得到B1,若A1B1=,则AB=________。
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
设区域D={(x,y|x2+y2≤1,x≥0},计算二重积分
求下列积分。(Ⅰ)设f(x)=∫1xe—y2dy,求∫01x2f(x)dx;(Ⅱ)设函数f(x)在[0,1]上连续且∫01f(x)dx=A,求∫01dxf(x)f(y)dy。
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设z=f(x,y)=x2arctan=______.
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
随机试题
大体积混凝土构筑物产生裂缝的原因有()。
习近平总书记提出了“绿水青山就是金山银山”的发展理念。以下最能体现这一理念的是:
能抑制HMG-CoA还原的药物是:
酶蛋白质子转移的机制
6个月小儿进行免疫接种后第二天,接种部位出现4cm红肿伴淋巴结轻度肿大,属于()。
风心病二尖瓣狭窄患者经常出现呼吸困难、咳嗽、咯血等症状,经2年内科治疗后,上述症状逐渐减轻,但有食欲缺乏、肝区疼痛、水肿。这提示
下列哪些证据不能单独作为认定案件事实的证据?
()一般不用来表示资金的日寸间价值。
随着权力的分散,采用分权型财务管理体制通常无法完全避免的一种成本或代价是()。
《中共中央关于印发的通知》是()。
最新回复
(
0
)