首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (I)证明f(x)在x=0处连续; (Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
设 (I)证明f(x)在x=0处连续; (Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
admin
2019-08-11
93
问题
设
(I)证明f(x)在x=0处连续;
(Ⅱ)求区间(-1,﹢∞)内的f
’
(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
选项
答案
(I)由题设当x∈(-1,﹢∞),但x≠0时f(x)=[*],所以 [*] 所以f(x)在x=0处连续. (Ⅱ)[*] 下面求区间(-1,﹢∞)内x≠0处的f
’
(x): [*] 为讨论f
’
(x)的符号,取其分子记为g(x),即令 g(x)=(1﹢x)ln
2
(1﹢x)-x
2
,有g(0)=0. g
’
(x)=21n(1﹢x)﹢ln
2
(1﹢x)-2x,有g
’
(0)=0, 当-1<x<﹢∞,但x≠0时, [*] 由泰勒公式有当-1<x<﹢∞,但x≠0时,g(x)=[*]g
”
(ξ)x
2
<0,ξ介于0与x之间. 所以当-1<x<﹢∞,但x≠0时,f
’
(x)<0.又由f
’
(0)=[*],所以f
’
(x)<0(-1<x<﹢∞), 由定理:设f(x)在区间(a,b)内连续且可导,导数f
’
(x)<0,则f(x)在区间(a,b)内为严格单调减少.故f(x)在区间(-1,﹢∞)内严格单调减少.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1yN4777K
0
考研数学二
相关试题推荐
设f(x)在x=0处连续,且x≠0时,,求曲线y=f(x)在x=0对应的点处的切线方程.
(1)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离的平方,求该圆盘的质量m;(2)将以曲线,x=1,x=4及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
设函数z=f(x,y)(xy≠0)满足=y2(x2-1),则dz=______.
设微分方程xyˊ+2y=2(ex-1).求上述微分方程的通解,并求使y(x)存在的那个解(将该解记为y0(x),以及极限值y0(x);[img][/img]
(07年)设D是位于曲线(a>1,0≤x<+∞)下方、x轴上方的无界区域.(I)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(05年)设函数f(x)连续,且f(0)≠0,求极限
(02年)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
(10年)函数y=In(1—2x)在x=0处的n阶导数y(n)(0)=________.
(07年)设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是
(07年)当x→0x时,与等价的无穷小量是
随机试题
Onedayafarmerboughtfourdonkeysatthemarketplaceinthevillage.Hegot【56】thebackofoneof【57】andbegantotidehome.
脉内的气是指()脉外之气是指()
罗某从外地采购一批玉米存放在一粮食仓库销售,甲市乙区技术监督局接到这批玉米已发生霉变举报后,即派员前往现场检查核实。该局人员对这批玉米全部进行查封,并从这批玉米中抽出四袋样品送检,制作了现场笔录。罗某对此不服,向法院提起行政诉讼。据此,回答下列问题。如
以下属于征收、征用集体土地政策规定的有()。
采用低正常股利加额外股利政策的意义有()。
G20金融消费者保护十项基本原则中,()原则表示所有的利益相关者都应参与金融教育,应当使消费者容易获取与消费者保护、消费者权利和义务相关的信息。
根据增值税法律制度的规定,下列行为中,涉及的进项税额不得从销项税额中抵扣的是()。
下面是某求助者的WAIS—RC测验结果:在该求助者测验结果中,算术分测验的百分等级是()。
如果我们必须用一句话给免疫系统下个定义,答案一定是“识别非我的机制”。这是免疫系统最核心的部分,其余的东西,比如抗体的形成或者巨噬细胞消灭敌人的能力,都必须建立在这个机制之上。换句话说,只要生命体能够将敌人辨认出来,剩下的事情就好办了,目前医学界遇到的最难
软件的调试方法主要有:强行排错法、______和原因排除法。
最新回复
(
0
)