首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设图形(a),(b),(c)如下: 从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
admin
2017-11-22
85
问题
设图形(a),(b),(c)如下:
从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫
0
x
f(t)dt与y=f’(x)的图形分别是
选项
A、(a),(b),(c).
B、(a),(c),(b).
C、(b),(a),(c).
D、(c),(a),(h).
答案
C
解析
以(a)或(b)或(c)为y=f(x)的图形,从∫
0
x
f(t)dt及f’(x)的几何意义来看其它两个图形是否分别是y=∫
0
x
f(t)dt和y=f’(x)的图形.
若(a)是y=f(x)的图形,则f(x)在[0,1]单调上升且f)>0(x∈[0,1])
f’(x)≥0,∫
0
x
f(t)dt>0(
x∈(0,1]).但(c)中x轴下方有图像,故(a)不是y=f(x)的图形,于是(A),(B)均不正确.若(b)是y=f(x)的图形,则f(x)有唯一最大值点x
0
∈(0,1),f(x)在[0,x
0
]单调上升,在[x
0
,1]单调下降,且f(x)>0(x∈(0,1)),故f(t)dt>0且单调上升(x∈[0,1]),f’(x)≥0(x∈(0,x
0
)),f’(x
0
)=0,f’(x)≤0(x∈(x
0
,1)).因此(C)是正确的.
若(C)是y=f(x)的图形,则f(x)在[0,1]单调下降,于是f’(x)≤0.因此(D)不正确,故应选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/1nX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程.
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
确定常数a,b,c,使得=c.
设二次方程x2一Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与y的概率密度.
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(A)=f(b)=0,∫abf(x)dx=0.证明:在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η).
已知α=[1,k,1]T是A-1的特征向量,其中,求k及α所对应的特征值.
随机试题
静态作业的特点是
A.心电图B.心肌活检C.X线胸片D.冠状动脉造影E.放射性核素心肌显像诊断冠状动脉粥样硬化性病变最有价值的检查方法是
在课外、校外教育中,教师处于()
谈话法最能体现教学的
金融监管的原则有哪些?金融监管的内容和手段分别是什么?当前我国应如何健全金融监管,守住不发生系统危险的底线?
抗日根据地的政权,是中国共产党领导下的抗日民族统一战线性质的政权。在政权机关工作人员的名额分配上实行“三三制”原则,分别是指
如果在Applet中要访问一个HTML文件,可以请求浏览器实现相应HTML文本的显示。通过AppletContext的【】方法,Applet可以通知浏览器在哪个窗口中显示哪个URL中的文件。
他彻底修改提纲主张
Iheardmanyparentscomplainingthattheirteenagechildrenarerebelling,Iwishitwereso.Atyourageyououghttobegrowin
Howmanykindsoftravelbooksarementionedinthepassage?
最新回复
(
0
)