首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
admin
2018-05-21
69
问题
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
选项
答案
由泰勒公式得 f(-1)=f(0)+f’(0)(-1-0)+[*](-1-0)
3
,ξ
1
∈(-1,0), f(1)=f(0)+f’(0)(1-0)+[*](1-0)
3
,ξ
2
∈(0,1), [*] 两式相减得f"’(ξ
1
)+f"’(ξ
2
)=6. 因为f(x)在[-1,1]上三阶连续可导,所以f"’(x)在[ξ
1
,ξ
2
]上连续,由连续函数最值定理,f"’(x)在[ξ
1
,ξ
2
]上取到最小值m和最大值M,故2m≤f"’(ξ
1
)+f"’(ξ
2
)≤2M,即m≤3≤M. 由闭区间上连续函数介值定理,存在ξ∈[ξ
1
,ξ
2
][*](-1,1),使得f"’(ξ)=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/1Kr4777K
0
考研数学一
相关试题推荐
函数f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最小值是_________.
设a1=2,an+1=,(n=1,2,…).证明
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0.试证明至少存在一点ξ∈(a,b),使
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是()
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则r(β4,β2,β3,β4)=()
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设方程组有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则方程组AX=b的通解(一般解)是
现有k个人在某大楼的一层进入电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
随机试题
最可能的诊断是该病人X线表现一般不出现
下列哪项不是风湿活动的指标
下列哪项不引起血尿
一般来说,投资期限越长,有价证券的()。
—Doyouthinktheirtabletennisteamwillwinthefirstplaceatthecomingsportsmeeting?-—______.Oursismuchstrongertha
若复数z1=4+29i,z2=6+9i,其中i是虚数单位,则复数(z1-z2)i的实部为__________.
Inathree-monthperiodlastyear,twoBrooklyniteshadtobecutoutoftheirapartmentsandcarriedtohospitalonstretchers
WriteonANSWERSHEETTWOacompositionofabout200wordsonthefollowingtopic:Somestudentsprefertostudyalone.Othe
Haveyouevermadeaprofitfromwalkingadog?Doyoulikeworkingaloneoringroups?Haveyoueversetaworldrecordinanyt
ManyBrazilianscannotread.In12000,aquarterofthoseaged15andolderwerefunctionallyilliterate(文盲).Many【C1】______do
最新回复
(
0
)