首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组 的两个解向量,试求方程组的通解,并确定参数a,b,c.
已知η1=[-3,2,0]T,η2=[-1,0,-2]T是线性方程组 的两个解向量,试求方程组的通解,并确定参数a,b,c.
admin
2016-09-19
161
问题
已知η
1
=[-3,2,0]
T
,η
2
=[-1,0,-2]
T
是线性方程组
的两个解向量,试求方程组的通解,并确定参数a,b,c.
选项
答案
对应齐次方程组有解 ξ=η
1
-η
2
=[-2,2,2]
T
或[-1,1,1]
T
, 故对应齐次方程组至少有一个非零向量组成基础解系,故 [*] 又显然应有r(A)=r(A|b)≥2,从而r(A)=r(A|b)=2,故方程组有通解 k[-1,1,1]
T
+[-3,2,0]
T
. 将η
1
,η
2
代入第一个方程,得 -3a+2b=2,-a-2c=2, 解得a=-2-2c,b=-2-3c,c为任意常数,可以验证:当a=-2-2c,b=-2-3c,c任意时, r(A)=r(A|b)=2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0tT4777K
0
考研数学三
相关试题推荐
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{x,y}≤1}=________.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知f(x,y)=x2+4xy+y2,求正交变换P,,使得f(x,y)=2u2+2uv
随机试题
丙公司是否有权收购本公司的股份?为什么?本题中丙公司回购自己的股份有何不妥之处?法院是否应当支持周某的主张?为什么?
()是指银行所持有的各类风险性资产余额。
(2017年)增值税一般纳税企业以支付现金方式取得联营企业股权的,所支付的与该股权投资直接相关的费用应计入当期损益。()
2005年9月20日,该公司与甲企业签订产品委托代销合同。合同规定,采用视同买断方式进行代销,甲企业代销A电子设备100台,每台销售价格为(不含增值税价格,以下同)50万元。至12月31日,该公司向甲企业发出80台A电子设备,收到甲企业寄来的代销清单上注明
阻碍互惠交换实现的主要障碍包括()。
居民点用地不同于一般的自然土地,具有很大的使用价值和级差收益。一般来说,工业用地的价值为农业用地的100倍,商业用地的价值又为工业用地的100倍。我国城市建成区面积为12900平方公里,占国土面积的0.134%,据估计平均每平方公里城市土地提供产值70万元
自古以来,华山以险峻著称于世。华山的险景不包括:
以下软件中属于计算机应用软件的是()
TheOscarbestactor______hissuccessmoretoluckthantoability.
Waffles?Frenchtoast?Bacon?Bigbreakfastsmaybeathingofthepast.AccordingtotheAssociatedPress,moreAmericansarec
最新回复
(
0
)