首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合分布为 其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:(Ⅰ)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
设二维随机变量(X,Y)的联合分布为 其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:(Ⅰ)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
admin
2016-10-20
77
问题
设二维随机变量(X,Y)的联合分布为
其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=
,记Z=X+Y.求:(Ⅰ)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
选项
答案
(Ⅰ)由联合分布性质,有0.1+a+0.2+6+0.2+0.1+c=1,即 a+b+c=0.4. ① 由EXY=-0.1-2a-0.6+0.2+3e=-0.1[*]3c-2a=0.4. ② 由 P{X≤0|Y≥2}=[*] 3a-5c=-0.7. ③ 联立①,②,③,解方程组[*]得a=0.1,b=0,1,c=0.2. (Ⅱ)由(X,Y)的联合分布 [*] 及Z=X+Y,可知Z的取值为0,1,2,3,4.由于 P{Z=0}=P{X=-1,Y=1}=0.1, P{Z=1}=P{X=0,Y=1}+P{X=-1,Y=2}=0.1+0.1=0.2, P{Z=2}=P{X=0,Y=2}+P{X=-1,Y=3}+P{X=1,Y=1} =0.2+0.2=0.4, P{Z=3}=P{X=0,Y=3}+P{X=1,Y=2}=0.1, P{Z=4}=P{X=1,Y=3}=0.2, 从而得X的概率分布为 [*] (Ⅲ)由X,Y的边缘分布可知 P{Z=Y}=P{X+Y=Y}=P{X=0}=0.3, P{Z=X}=P{X+Y=X}=P{Y=0}=[*]=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0lT4777K
0
考研数学三
相关试题推荐
[*]
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
用文氏图和几何概率解释两个事件A与B相互独立的含义.
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
要在海岛I与某城市C之间铺设一条地下光缆(如图2.12所示),经地质勘测后分析,每千米的铺设成本,在y>0的水下区域是c1,在y<0的地下区域是c2证明:为使得铺设该光缆的总成本最低,θ1和θ2应该满足c1sinθ1=c2sinθ2.
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
随机试题
从体裁说,睢景臣《[般涉调]哨遍》(高祖还乡)属于()
先秦时期,明确提出“仁政”思想的是孔子。()
旋毛虫病是严重危害公共卫生的重要人畜共患病。该病的诊断不能采取的方法是
A、相畏、相杀B、相杀、相反C、相须、相使D、相须、相恶E、相恶、相反七情配伍中,可以降低药物毒副作用的是
药物与受体不可逆的键合为( )。含羰基的药物与受体肽键的一种结合方式为( )。
药物经皮吸收是指()
商业银行的风险管理模式大体经历了四个阶段,依次是()。
联结主义学习理论认为()。
根据经典条件反射作用理论,铃声可以诱发狗的唾液分泌反应,则铃声是()
假如重力突然消失,下列情况仍然存在的是()。
最新回复
(
0
)