首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2021-02-25
66
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(Ⅰ)与(Ⅱ)的系数矩阵分别为A和B,则由(Ⅰ)的基础解系可知AB
T
=0,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
为方程组(Ⅰ)的基础解系,所以该向量组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n-n=n. 又由于方程组(Ⅰ)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(Ⅰ)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为 y=k
1
(b
11
,b
12
,…,b
1,2n
)
T
+k
2
(b
21
,b
22
,…,b
2,2n
)
T
+…+k
n
(b
n1
,b
n2
,…,b
n,2n
)
T
, 其中k
1
,k
2
,…,k
n
为任意常数.
解析
本题考查齐次线性方程组基础解系的概念和通解的结构以及方程组系数矩阵的秩与基础解系中解向量个数的关系.
转载请注明原文地址:https://www.kaotiyun.com/show/0a84777K
0
考研数学二
相关试题推荐
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设b>a>e,证明:ab>ba.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
,求A的全部特征值,并证明A可以对角化.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A=,则下列矩阵中与A合同但不相似的是
微分方程y〞+y=-2x的通解为_________.
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
随机试题
萃取操作中,一般情况下选择性系数β>1。
胎方位是指( )
四逆汤的组成是
下列行为中属于犯罪预备行为的是哪项?()
压力测试至少应包括()
注册会计师负责审计甲公司20×4年度财务报表。在识别、评估和应对由于舞弊导致的重大错报风险时,注册会计师遇到下列事项,请代为作出正确的专业判断。在组织审计项目组讨论舞弊风险时,注册会计师认为应当讨论的内容有()。
公有制的实现形式,具体指的是()。
中央和地方的国家机构职权的划分,所遵循的原则是()。
2016年,我国全年完成邮电业务收人总量43344亿元,比上年增长52.7%。其中,邮政业务总量7397亿元,增长45.7%;电信业务总量35948亿元,增长54.2%。邮政业全年完成邮政函件业务36.2亿件,包裹业务0.3亿件,快递业务量312.8亿件;
网络212.31.136.0/24和212.31.143.0/24汇聚后的地址是______。
最新回复
(
0
)