首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为a,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为a,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
admin
2017-11-13
60
问题
甲、乙两人比赛射击,每个射击回合中取胜者得1分,假设每个射击回合中,甲胜的概率为a,乙胜的概率为β(α+β=1),比赛进行到一人比另一人多2分为止,多2分者最终获胜.求甲、乙最终获胜的概率.比赛是否有可能无限地一直进行下去?
选项
答案
设A={甲最终获胜},B={乙最终获胜}.在前两次比赛中,若“甲连胜两个回合”,记为C
1
,则P(A|C
1
)=1;若“乙连胜两个回合”,记为C
2
,则P(A|C
2
)=0;若“甲、乙各胜一个回合”,记为C
3
,则前两个回合打平,从第三回合起,比赛相当于从头开始一样,所以P(A|C
3
)=P(A).显然 P(C
1
)=α
2
,P(C
2
)=β
2
,P(C
3
)=2αβ, 由全概率公式 P(A)=P(A|C
1
)P(C
1
)+P(A|C
2
)P(C
2
)+P(A|C
3
)P(C
3
) =α
2
+0+2αβP(A) 得P(A)=[*].同理有 P(B)=P(B|C
1
)P(C
1
)+P(B|C
2
)P(C
2
)+P(B|C
3
)P(C
3
) =0+β
2
+2αβP(B), 可得P(B)=[*]因 [*] 所以以概率为1地相信:比赛不会无限地一直进行下去,或甲最终获胜,或乙最终获胜.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0Vr4777K
0
考研数学一
相关试题推荐
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.(1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.
求微分方程y"+4y’+4y=eax的通解.
求微分方程y"+2y’一3y=(2x+1)ex的通解.
设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(xn,0),计算
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
直线L的方向向量为[*]而平面π的法向量n=(1,1,0),故s=2n,所以s∥n,即直线L与平面π垂直.
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设函数f(x)在[0,x]上连续,且.试证:在(0,π)内至少存在两个不同的点ξ1和ξ2,使f(ξ1)=f(ξ2)=0.
设Ω={(x,y,z)|x2+y2+z2≤1},则z2dxdydz=______.
假设随机变量X在区间[-1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于
随机试题
决定乙型脑炎病毒毒力的蛋白为
下列哪项不属于麻黄汤证的病机
27
价值工程的核心是()。
“¥325.12”的大写金额是“叁佰贰拾伍元壹角贰分”。 ( )
下列有关信用期间的表述中,正确的有()。
【资料】某白酒生产企业为增值税一般纳税人,2015年11月份发生下列业务:(1)从农户收购粮食100吨,开具农产品收购发票,注明的买价合计为30万元,同时接受运输服务取得增值税专用发票,注明增值税税额0.33万元;(2)购买
深化求助者自我认识的关键是()。
"Ineveryknownhumansociety,themale’sneedforachievementcanberecognized.Inagreatnumberofhumansocietiesmen’ss
Theauthor______usasconsistentlyfairandaccurateabouttheissues.(中国科学院2013年3月试题)
最新回复
(
0
)