首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A1一2A2,2A2+3A3,一3A3+2A1|=_____________.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A1一2A2,2A2+3A3,一3A3+2A1|=_____________.
admin
2018-04-15
77
问题
设三阶方阵A=[A
1
,A
2
,A
3
],其中A
i
(i=1,2,3)为三维列向量,且A的行列式|A|=一2,则行列式|—A
1
一2A
2
,2A
2
+3A
3
,一3A
3
+2A
1
|=_____________.
选项
答案
由(一A
1
一2A
2
,2A
2
+3A
3
,一3A
3
+2A
1
)=(A
1
A
2
,A
3
)[*] 得|一A
1
一2A
2
,2A
2
+3A
3
,一3A
3
+2A
1
| [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/0SX4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=xTAx=3x12+ax22+3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值.用正交变换将二次型f化为标准形,并写出所用正交变换;
设三元二次型f(x1,x2,x3)=xTAx的负惯性指数为q=1,且二次型的矩阵A满足A2-A=6E,则二次型xTAx在正交变换下的标准形是()
已知,B是3阶非零矩阵,且AB=0,则()
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
已知A是n阶实对称矩阵,满足A2一3A+2E=0,且B=A2一2A+3E.(Ⅰ)求B-1;(Ⅱ)证明:B正定.
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥6,若A~μE是正定阵,则参数μ应满足()
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α.①求xTAx的表达式.②求作正交变换x=Qy,把xTAx化为标准二次型.
随机试题
DNA结合区结构形式有
A、单纯疱疹B、地图舌C、伪膜型白色念珠菌病D、慢性唇炎E、白色角化病病损常变换位置
心源性哮喘最主要的临床表现是:
32岁孕妇,因前置胎盘行剖宫手术,术后即发现阴道内部有液体流出。为明确诊断。首先应采取()。
某项目的投标总价为4500万元,投标保证金不得超过()万元。
基金信息披露方面要求披露的信息应当以客观事实为基础体现了()。
3,5,10,21,(),91
地球磁场发生磁暴的周期性经常与太阳黑子的周期一致。随着太阳黑子数目的增加,磁暴的强度增大。当太阳黑子的数目减少时,磁暴的强度降低。所以,科学家推测,太阳黑子的出现可能是磁暴的原因。下列的哪一项与上面所使用的方法最为类似?
某省会市人民政府为保护当地酒类生产,决定限制外地酒类进入本市,于是制定了《关于外地酒类运输车辆管理规定》。该规定要求,一切运输外地酒类的车辆在进城前,必须向市酒类专卖局设在各路口的检查站交纳运输管理费500元,不交者将不准进城。许多外地货车司机认为这项规定
假设(SP)=0100H,(SS)=2000H,执行PUSH BP指令后,栈顶的物理地址是( )。
最新回复
(
0
)